

# White Paper of Charging Interface Initiative e.V (CharIN)

**Electric Vehicle Supply Equipment (EVSE) Threat Model** 

2024-06-25

**Classified as Business** 



# **Table of Contents**

| 1.   | Contrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | utors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3  |  |  |  |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|
| 2.   | Executiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4  |  |  |  |  |  |  |  |  |  |
| 3.   | Glossary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5  |  |  |  |  |  |  |  |  |  |
| 4.   | Introduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6  |  |  |  |  |  |  |  |  |  |
| 4.1. | Intende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Audience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  |  |  |  |  |  |  |  |  |  |
| 4.2. | Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6  |  |  |  |  |  |  |  |  |  |
| 4.3. | Scoping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7  |  |  |  |  |  |  |  |  |  |
| 4.4. | 4. Methods of Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |  |  |  |  |  |  |
| 4.5. | Threat N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aodeling with STRIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |  |
| 5.   | EVSE Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nreat Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 |  |  |  |  |  |  |  |  |  |
| 5.1. | Threat N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aodel Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 |  |  |  |  |  |  |  |  |  |
|      | 5.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | How To Read Threat Model Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 |  |  |  |  |  |  |  |  |  |
|      | 5.1.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Threat Model Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |  |  |  |  |  |
|      | 5.1.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Legislation and Regional Differences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |  |
| 5.2. | Threat N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contributors       3         Executive Summary       4         Glossary       5         Introduction       6         Intended Audience       6         Caveats       6         Caveats       6         Coping Discussion       7         Methods of Analysis       7         Threat Modeling with STRIDE       8         EVSE Threat Modeling       10         Threat Model Findings       10         St.1.       How To Read Threat Model Findings       10         St.2.       Threat Model Diagrams       11         Gonclusions and Regional Differences       10         St.2.       Threat Model Diagrams       12         St.2.       Mitigations for Systemic and Architectural Threats       22         St.2.1.       Meta-mitigations for Systemic and Architectural Threats       22         St.2.1.       Meta-m |    |  |  |  |  |  |  |  |  |  |
| 5.3. | 2.       Executive Summary         3.       Glossary         4.       Introduction         4.1.       Intended Audience         4.2.       Caveats         4.3.       Scoping Discussion         4.4.       Methods of Analysis         4.5.       Threat Modeling with STRIDE         5.       EVSE Threat Modeling         1.       Threat Modeling         1.       Threat Model Findings         1.       Threat Model Findings         1.       Threat Model Assumptions         1.       Statistical Assumptions         1.       Statisti |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |  |  |  |  |  |  |
| 6.   | .2. Threat Model Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |  |  |  |  |  |  |
| 6.1. | Key Fut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ure Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 |  |  |  |  |  |  |  |  |  |
| 6.2. | Mitigati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 |  |  |  |  |  |  |  |  |  |
|      | 6.2.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Meta-mitigations for Systemic and Architectural Threats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22 |  |  |  |  |  |  |  |  |  |
|      | 6.2.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mitigations for EVSE Devices and Organizations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 |  |  |  |  |  |  |  |  |  |
| 7.   | Framew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orks and Harmonized Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 |  |  |  |  |  |  |  |  |  |
| 8.   | Referen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 |  |  |  |  |  |  |  |  |  |
| Арр  | endix A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Threat Model Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28 |  |  |  |  |  |  |  |  |  |
| A.   | 1. Threat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Model Dataflow Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |  |  |  |  |  |  |  |  |  |
| Α.   | 2. Chargi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng Infrastructure Architecture Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32 |  |  |  |  |  |  |  |  |  |
| Α.   | 3. Compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ete Table of Threat Scenarios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |  |  |  |  |  |  |  |  |



# 1. Contributors

We would like to express our sincere gratitude and appreciation to all the contributors to this white paper, who have generously shared their insights, expertise, and feedback on the topic of cybersecurity and vulnerabilities in the electric mobility. Their valuable contributions have enriched the quality and depth of this white paper and have helped us to present a comprehensive and balanced perspective on the opportunities and challenges of electric vehicles (EVs) and their impact on human and environmental sustainability. We have together also explored the potential cybersecurity threats that exist in EV charging stations (EVSEs), communications to EVs, and upstream services, such as EVSE vendor cloud services, third party systems, and grid operators.

We hope that this white paper will inspire further dialogue and collaboration among the diverse stakeholders of the EV ecosystem and will foster a responsible and ethical development of this transformative technology.

#### **Task Force lead:**

| Mayank Sharma Schneider Electric | Mayank Sharma | Schneider Electric |
|----------------------------------|---------------|--------------------|
|----------------------------------|---------------|--------------------|

#### Subgroup lead:

| Kevin Harnett | IOActive |
|---------------|----------|
|---------------|----------|

#### Subgroup Members:

| Theis Solberg Hjorth | Danfoss                               |
|----------------------|---------------------------------------|
| Brian Dindlebeck     | Pacific Northwest National Laboratory |
| Roland Varriale      | Argonne National Laboratory           |
| Maggie Shipman       | Southwest Research Institute          |
| Thomas Ruof          | Mercedes Benz                         |
| Gabriella Fiore      | ABB E-mobility                        |
| Heinfried Cznottka   | Achelos GmbH                          |
| Zoran Radonjic       | Irdeto                                |



# 2. Executive Summary

The (Battery) Electric Vehicle (BEV/EV) and charging infrastructure landscape is rapidly evolving in a market where cost and time-to-market are valued higher than security. Technologies used to build the BEV ecosystem suffer from well-known cybersecurity issues, which expose vulnerabilities and risk. Current perception is that charging stations are build-and-forget devices, and not that they are highly exposed, network connected, physically vulnerable endpoints which pose a great challenge to threat mitigation.

Charging infrastructure provides necessary functionality and support for the transportation sector, which increases the need for security. The first EV charging systems were built solely with regard to mandated security requirements inherited from their components, such as payment systems. However, modern energy systems, such as Electric Vehicle Supply Equipment (EVSEs), use, or will shortly use, technologies such as smart grids and BEVs to balance renewable energy source consumption. Securing such an advanced, fully connected, and heterogeneous supply grid will take a similar effort to the ICT (Information and Communication Technology) sector that secures webservers and cloud infrastructure.

This work developed a charging infrastructure model, based on assumptions of common deployments, and identifies the common risks, threats, vulnerabilities, and design flaws that can plague these technologies when they are built without regard to security. We describe the consequences of disregarding these threats, but also highlight known risk mitigations to reduce the risk of compromise, to aid designers, builders, and auditors of these systems.

The analysis work is done on an abstract model that organizations can tailor to fit their specific implementations or systems. This work aims to inform Electric Vehicle Charging Infrastructure (EVCI) stakeholders of security issues and provide best practices on how to mitigate them.

The paper uses the High Consequence Events (HCE) methodology developed by Idaho National Lab (INL) which calculates risk exposure. This quantitative methodology augments traditional risk calculation which depends on threat, vulnerability, and consequence by adding additional impact criteria: Magnitude, Duration, Recovery Effort, Safety Costs, Effect Propagation Beyond EV or EVSE and EV Industry Confidence/Reputation Damage.

Finally, the threat scenarios were ranked by HCE score and categorized into four impact areas: (1) Generic, (2) Grid and EV, (3) Implementors and Operators, and (4) Payment and Billing. Notable, highranking threats in these categories include compromise of cloud hosting provider infrastructure (Generic), compromising endpoints or management servers to cause grid impact (Grid and EV), denial of EV charging (Grid and EV), physical or software tampering with EVSE to cause local (EVSE) or grid level malfunctions (Grid and EV), privileged access to administrator networks (Implementers and Operators), denial of payment processing (Payment and Billing).



# 3. Glossary

| APT    | Advanced, Persistent Threat                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|
| CharIN | Charging Interface Initiative e.V.                                                                                                     |
| СРО    | Charge Point Operator                                                                                                                  |
| CSMS   | Charging System Management System                                                                                                      |
| CVE    | Common Vulnerabilities and Exposures                                                                                                   |
| DoS    | Denial of Service                                                                                                                      |
| DC     | Direct Current                                                                                                                         |
| DSO    | Distribution System Operator                                                                                                           |
| EMI    | Electro Magnetic Interference                                                                                                          |
| EMS    | Energy Management System                                                                                                               |
| EN     | Europäische Norm/European Norm (i.e., European Standards)                                                                              |
| EVCI   | Electric Vehicle Charging Infrastructure                                                                                               |
| EVSE   | Electric Vehicle Supply Equipment, charging station, charge point                                                                      |
| HCE    | High Consequence Event, vulnerability ranking system                                                                                   |
| ICE    | Internal Combustion Engine                                                                                                             |
| ICEV   | Internal Combustion Engine Vehicle                                                                                                     |
| ICT/IT | Information and Communication Technologies                                                                                             |
| IEC    | International Electrotechnical Commission                                                                                              |
| lloT   | Industrial Internet of Things                                                                                                          |
| ISO    | International Organization for Standardization                                                                                         |
| OEM    | Original Equipment Manufacturer                                                                                                        |
| PLC    | Powerline communication                                                                                                                |
| SAE    | Society of Automotive Engineers                                                                                                        |
| SDO    | Standards Developing Organization                                                                                                      |
| SIL    | Safety Integrity Level                                                                                                                 |
| STRIDE | Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of privilege. A method for threat modelling |



# 4. Introduction

CharIN is dedicated to developing and establishing the Combined Charging System (CCS) as the standard for charging light-duty vehicles and supports the development of the Megawatt Charging System (MCS) as the standard for charging commercial vehicles.

This document was created by the Task Force Cybersecurity Work Package 2 (WP2: Threat Modeling) working group of the CharlN association. The purpose of the working group is to specify common vulnerabilities and their consequences in charging infrastructure, with focus on the EVSE (charging station).

WP2 used two types of EVSEs, as their baseline for the EVSE threat modeling:

- Level 2 EVSEs that offers higher-rate AC charging through 240V (in residential applications) or 208V (in commercial applications) electrical service, and is common for home, workplace, and public charging. Level 2 chargers provide 7kW-19kW of power.
- **Direct Current Fast Charging (DCFC)** equipment that offers rapid charging along heavy-traffic corridors at installed stations. DCFCs provide 50kW-350kW of power.

This work is intended to support the security analysis and risk assessment effort required by regulations such as the European Union Cyber Resilience Act<sup>1</sup> and the Cybersecurity Act<sup>2</sup>.

### 4.1. Intended Audience

This document is intended for implementers, developers, testers, architects, designers, security officers, auditors, standards writers, and all people who need to be aware of the known attacks against the types of devices and communication technologies present in the charging infrastructure. The information is based on experience from known attacks against similar types of devices, communication technologies, APIs, and other technologies used in contexts within industry and IT.

### 4.2. Caveats

This document should be considered with the following caveats:

- The document's findings are limited to the assumptions it is built upon, such as the interactions between EV, EVSE, CPO, etc.
- The scoring and threats are limited by the sum of the contributors' knowledge and experience.
- The threats are defined at a high-level and not associated with specific CVEs, vendors, or hardware.
- Stakeholders and decision-makers should consider applicability of threats to their specific business use cases.

<sup>&</sup>lt;sup>1</sup> https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

<sup>&</sup>lt;sup>2</sup> https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-act



### 4.3. Scoping Discussion

This document specifies common threats mapped to a high-level architectural dataflow diagram of a charging infrastructure, with a focus on the EVSE. External services and their connection to the EVSE are also included, such as payment systems, operators, vendors, users, grid, etc.

While we ranked threats and proposed mitigations, these were completed at a very high model level based on a simplified architecture model to provide widespread applicability (See Appendix A). Threats will likely need additional analysis and adaptation to fit a specific business implementation.

Topics out of scope include backend systems, databases, cloud technology, and most of the architecture that is not directly connected and communicating with the EVSE. Implementations are also out of scope in order to provide a high-level threat model that is suitable for different and evolving setups.

# 4.4. Methods of Analysis

The threat modeling method used within this white paper to identify threats and mitigations is STRIDE (Kohnfelder & Garg, 1999), (Shostack, 2014), based on examining each element in the system model and enumerating common attack techniques against the system. As threats generally tend to follow the transfer and storage of data, STRIDE is applied to dataflow models.

The model of the attacker is classified as a Dolev-Yao intruder, i.e. the attacker has full knowledge of the system and can intercept and alter any flow of data between interfaces.

Threat scenarios have been identified, based on known attack patterns. They are a simplified version of a kill chain or attack tree, since specifying the consequences of an attack is difficult without a specific implementation to examine. However, threat scenarios illustrate the impact in a way that can be mapped to an existing system.

Threats to the charging infrastructure have been ranked using the High Consequence Event (HCE) method, which is further defined in *Consequence-Driven Cybersecurity for High-Power Electric Vehicle Charging Infrastructure* (Carlson, et al., 2023). The threat model provided in this paper should be a guideline to assist in ranking efforts of other systems.

We have noticed that some rankings differ based on cultural and legislative differences across geographical territories, so readers are encouraged to use the rankings here only as a baseline for ranking an actual system. The HCE ranking system also lacks a clear mechanism for ranking Advanced Persistent Threats (APTs), i.e. threats that exploit a vulnerability and then lie dormant and undetected for long periods of time.



# 4.5. Threat Modeling with STRIDE

This section has a brief introduction to STRIDE, followed by a short discussion of how STRIDE does not include consequences of exploited threats, and how threat scenarios add this context.

STRIDE is an acronym representing a security threat modelling method where each letter represents a different kind of threat: Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of privilege, as defined in Figure 1.

The original article introducing **STRIDE** (Kohnfelder & Garg, 1999), defines threat, vulnerability, and attack as follows (emphasis added in italics):

**Threat**: Any potential *occurrence*, malicious or otherwise, *that can have an undesirable effect on the system resources* (files, registry keys, data-on-wire, etc.). Undesirable effects can be a system crash, the ability to read a sensitive file or modify a registry key, and so forth.

**Vulnerability**: Some *characteristic that makes it possible for a threat to occur*. Examples include weak security on a file, buffer overflows, and (in a server product running on Windows NT) missing client impersonation calls when servicing client requests.

**Attack**: An *action taken* by a malicious intruder *to exploit certain vulnerabilities to enact the threat*. Examples of attacks include steps taken by a non-administrator to acquire administrator privileges and a technique that allows private data to be leaked.



#### Figure 1 STRIDE overview<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> https://developer.ibm.com/articles/threat-modeling-microservices-openshift-4/



STRIDE is a popular tool for improving security of software during development. The authors also include examples of a threat or vulnerability for each element of STRIDE, such as this example for repudiability:

"Undetected attempts to break into a user account by the attacker. Lack of failed logon audits is the vulnerability"

Threat models, such as STRIDE, do not take into account the real-world consequences of the attacker's action. This paper attempts to address the missing consequence of an action with threat scenarios. A threat scenario is a short narrative that describes an actor's actions, the exploited vulnerability, and the resulting consequence. Using the previous example, the threat scenario might be, "Undetected attempts to break into a user account by an attacker *allows an attacker eventual access to the user account, which allows an attacker to perform additional malicious activity under the guise of an authorized user"* (Kohnfelder & Garg, 1999), where the italics embody the effect or *impact to an organization's objectives* which must be considered for a cyber-physical system such as the EV ecosystem. The italicized text is absent from the STRIDE example because STRIDE does not consider consequences as a result of exploited vulnerabilities.



# 5. EVSE Threat Modeling

### 5.1. Threat Model Findings

This section introduces the methods used for threat modelling, and at the end is an abbreviated table of the highest ranked threats. The full table is in Appendix A.

### 5.1.1. How To Read Threat Model Findings

The threat model findings are read by inspecting a threat scenario for the impact of a focus of concern and cross-examining the score for a given category.

As an example, consider the abbreviated threat scenario "An attacker physically tampers with EVSE power electronics to damage EVs or the grid (compromised electricity load balancing)". The overall HCE Severity Score is 3.5 out of 5, representing moderate severity. "Magnitude", "Duration", and "Effect Propagation Beyond EV or EVSE" are all 5, so those contribute most to the score. Depending on role, a reader may have more interest in a score of 5 for "Duration" than "Effect Propagation Beyond EV or EVSE".

A cybersecurity implementer may focus on mitigating grid impact by addressing the "Level of Impact" score. In conclusion, the objective in reading the threat model findings is to identify the impacted focus of business concern and identify criteria for mitigation.

#### 5.1.2. Threat Model Assumptions

When creating and refining these threat models, the authors intended to be comprehensive in including necessary functioning parts of the EVSE, while also excluding certain systems and components that may not provide value to the general EVSE stakeholder. Due to the interdependence of an EVSE, many disparate and specialized systems may need to be accounted for. Several threat models may expound upon our core threat model and offer hypotheticals based on subject matter expertise or personal experience with these systems. The models and scenarios presented within this white paper were refined through several rounds of internal review to ensure that a unified vision of core EVSE capabilities were covered.

The rapid evolution and advancement of EVSE componentry and implementation may give rise to deviations from the supplied threat model. This requires both an adaptation of the results presented in this white paper, and also that the work is revised and updated periodically.

### 5.1.3. Legislation and Regional Differences

There are differences and similarities between the use cases and regulations for EVs in the European Union and the USA. As an example of regulatory similarities, relevant authorities in both locales have determined to procure only EVs for certain sectors or for the whole population, with similar timelines through approximately 2035. Figures 2 and 3 show approximate timelines for some selected EV OEMs.

Contrastingly, the EU and USA EV infrastructures have a similar appearance, but the connections between entities may not be the same. For example, in the USA, it is possible that a charging station operator is also the local electric utility. Another important distinction is the perceived inevitability of electric vehicle adoption in Europe where it is already law. This difference was made apparent during discussions amongst the authors. The use cases, regulatory differences, and cultural perspectives have been incorporated in the threat model.









Figure 3 Electrification goals for the USA (evadoption, 2018)

The following releases exemplify the worldwide trends for the adoption of EVs over the coming years:



- In the USA, Executive Order 14057<sup>4</sup> restricts all government agencies' new acquisitions of lightduty vehicles to only EVs by 2027 and mid- and heavy-duty vehicle acquisitions to only EVs by 2035.
- In California, Executive Order N-79-20<sup>5</sup>, ends sales of ICE passenger vehicles and trucks by 2035<sup>6</sup>.
- The EU and UK have banned sales<sup>7</sup> of new combustion engine cars from 2035.

Also, in the current political climate, the recycling of battery components is a matter of national sovereignty, since critical raw materials are imported from places that do not always agree with democratic ideals:

• The EU has enacted a law on the acquisition of critical raw materials<sup>8</sup>, some of which are used for battery components.

In addition, the EU will mandate recycling of battery materials<sup>9</sup>

<sup>&</sup>lt;sup>4</sup> <u>https://www.whitehouse.gov/briefing-room/presidential-actions/2021/12/08/executive-order-on-catalyzing-clean-energy-</u>industries-and-jobs-through-federal-sustainability/

<sup>&</sup>lt;sup>5</sup> https://ww2.arb.ca.gov/resources/fact-sheets/governor-newsoms-zero-emission-2035-executive-order-n-79-20

<sup>&</sup>lt;sup>6</sup> https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-Climate.pdf

<sup>&</sup>lt;sup>7</sup> https://www.europarl.europa.eu/topics/en/article/20221019STO44572/eu-ban-on-sale-of-new-petrol-and-diesel-cars-from-

<sup>2035-</sup>explained https://www.gov.uk/government/publications/transitioning-to-zero-emission-cars-and-vans-2035-delivery-plan <sup>8</sup> https://www.europarl.europa.eu/news/en/agenda/briefing/2023-12-11/1/critical-raw-materials-securing-the-eu-s-supplyand-sovereignty

<sup>&</sup>lt;sup>9</sup> <u>https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/green-deal-industrial-plan/european-critical-raw-materials-act\_en</u>



## 5.2. Threat Model Diagrams

The presented threat model is based on the architecture model specified in Appendix A. This architecture is a simplified model, and any practical deployment will differ. This means the threat model is not exhaustive and may be inaccurate in some places; therefore, some conventional wisdom needs to be applied to map the model to a real EVSE system.

The threat scenarios point out common problem areas that may or may not exist in a given system, and do not provide a complete checklist of all the threats that must be considered. Its purpose is to guide the reader to think about parts of the system that may be overlooked, or those for which someone else may be assumed to be responsible for securing when in fact no one has thought of it. This should also assist with threat modeling for these missing parts by providing a partial picture of the types of threat scenarios for a given component.

The identified threats scenarios were ranked using the HCE method, which the authors define as a quantitative methodology that augments traditional risk calculation, which depend on threat, vulnerability, and consequence by adding an additional impact feature. The method uses eight categories of impact, and a rank from zero to five in each category, where zero is no impact and five is the highest severity of impact. Figure 1 includes the definitions of each of the criteria from *Consequence-Driven Cybersecurity for High-Power Electric Vehicle Charging Infrastructure* (Carlson, et al., 2023). The HCE Severity Score is the average score of the individual criteria score.

There are four kinds of stakeholders that could be impacted by the conclusion of a threat scenario. For the purposes of the threat model and scoring, each threat scenario only impacts one stakeholder. In the real world, most threat scenarios will impact more than one stakeholder. The four categories of Generic, Grid & EV, Implementers & Operators, and Payment & Billing are an attempt to balance the utility of this document for stakeholders and estimate the most likely impacted stakeholder.

The Impact On column represents the stakeholder that could be impacted by a given threat scenario, and is meant to aid reading comprehension of the table:

- Generic: These do not fit in one of the other categories or were highly likely to impact more than one category.
- Grid & EV: These are threat scenarios to the power grid and EV.
- Implementers & Operators: These are threat scenarios to implementers and operators, which includes CPOs and EVSEs.
- Payment & Billing: These are threat scenarios to the payment and billing stakeholders.



| Criteria                                        | Not<br>Applicable<br>(N/A) (0)                               | Low (1)                                                                                                                   | Medium (3)                                                                                                                                                    | High (5)                                                                                                                                                                 |
|-------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level of Impact                                 | N/A                                                          | Single unit affected (EV, XFC, or WPT)                                                                                    | Multiple units at a single site<br>affected (EV, XFC and/or<br>WPT)                                                                                           | Multiple units at multiple sites<br>affected (EV, XFC and/or WPT)                                                                                                        |
| Magnitude<br>(proprietary /<br>standardized)    | N/A                                                          | Manufacturer-specific protocol<br>implementation (EV or EVSE)                                                             | >1 manufacturer protocol<br>implementation (supply chain)<br>(EV or EVSE)                                                                                     | Across all standardized systems<br>(both EVSE and EVs)                                                                                                                   |
| Duration                                        | N/A                                                          | <8 hours                                                                                                                  | >8 hours to <5 days                                                                                                                                           | >5 days                                                                                                                                                                  |
| Recovery Effort                                 | Automated<br>recovery<br>without<br>external<br>intervention | Equipment can be returned to<br>operating condition via reset or<br>reboot (performed remotely or<br>by onsite personnel) | Equipment can be returned to<br>normal operating condition<br>via reboot or servicing by<br>offsite personnel (replace<br>consumable part; travel to<br>site) | Equipment can be returned to<br>normal operating condition only via<br>hardware replacement (replace<br>components, requires special<br>equipment, replace entire units) |
| Safety                                          | No risk of<br>injury or<br>death                             | Risk of minor injury (no<br>hospitalization), but NO risk of<br>death                                                     | Risk of serious injury<br>(hospitalization), but low risk<br>of death                                                                                         | Significant risk of death                                                                                                                                                |
| Costs                                           | No costs<br>incurred                                         | Cost of event is significant, but<br>well within the organization's<br>ability to absorb                                  | Cost of event will require<br>multiple years for financial<br>(balance sheet) recovery                                                                        | Cost of event triggers a liquidity<br>crisis that could result in bankruptcy<br>of the organization                                                                      |
| Effect Propagation<br>Beyond EV or EVSE         | N/A                                                          | Localized to site                                                                                                         | Within metro area                                                                                                                                             | Regional                                                                                                                                                                 |
| EV Industry<br>Confidence,<br>Reputation Damage | No impact to<br>EV adoption                                  | Minimal impact to EV<br>adoption                                                                                          | Stagnant EV adoption                                                                                                                                          | Negative EV adoption                                                                                                                                                     |

Table 1. HCE Ranking description (Carlson, et al., 2023)

### 5.3. Summary Findings

Table 2 is a summary table of findings, sorted by impact area and then the HCE score. For the complete list of threat scenarios, including vulnerability descriptions and mitigations, see Appendix A: Threat Model Details. The purpose of this table is to provide an overview of what are probably the most severe threats in each category, as a guideline for prioritizing further analysis.

The summary table defines the threat scenarios, which involve the consequences of an attack and how the attack was conducted. The reader should remember the context of a given threat scenario while reading.

The terminology is explained in section 5.1.1.



| Threat Scenario                                                                                                              | Impact on                     | HCE<br>Severity<br>Score | Level<br>of<br>Impact | Magnitude | Duration | Recovery<br>Effort | Safety | Costs | Effect<br>Propagation<br>Beyond EV<br>or EVSE | EV Industry<br>Confidence,<br>Reputation<br>Damage |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------------|-----------|----------|--------------------|--------|-------|-----------------------------------------------|----------------------------------------------------|
| An attacker compromises<br>privacy/sensitive data by<br>compromising the cloud hosting<br>provider of the vendor or operator | Generic<br>(non-<br>specific) | 3.375                    | 5                     | 3         | 5        | 3                  | 0      | 3     | 5                                             | 3                                                  |
| An attacker gains access to a device via downgrade attack                                                                    | Generic<br>(non-<br>specific) | 2.125                    | 5                     | 1         | 5        | 2                  | 0      | 2     | 1                                             | 1                                                  |
| An attacker obtains genuine<br>access credentials to devices<br>because the credentials are not<br>properly protected        | Generic<br>(non-<br>specific) | 1.875                    | 5                     | 1         | 5        | 1                  | 0      | 1     | 1                                             | 1                                                  |
| An attacker compromises exposed<br>management console to change<br>active frontend rectifier setpoints                       | Grid & EV                     | 4                        | 5                     | 5         | 5        | 4                  | 2      | 3     | 5                                             | 3                                                  |
| Attacker injects false data into<br>energy markets to imbalance grid<br>or manipulate energy costs                           | Grid & EV                     | 3.625                    | 5                     | 3         | 3        | 4                  | 2      | 3     | 4                                             | 5                                                  |
| CSMS transmits false data to DSO<br>to cause unnecessary islanding<br>event                                                  | Grid & EV                     | 3.5                      | 4                     | 5         | 5        | 4                  | 0      | 4     | 5                                             | 1                                                  |
| Compromised updates falsify EV reported remaining distance                                                                   | Grid & EV                     | 3.5                      | 5                     | 3         | 5        | 3                  | 1      | 4     | 5                                             | 2                                                  |



| An attacker physically tampers<br>with EVSE power electronics to<br>damage EVs or the grid<br>(compromised electricity load<br>balancing) | Grid & EV | 3.5   | 1 | 5 | 5 | 4 | 2 | 3 | 5 | 3 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|---|---|---|---|---|---|---|---|
| An attacker uses CSMS to<br>broadcast<br>RemoteTransactionStop, causing<br>voltage transients on the grid                                 | Grid & EV | 3.5   | 5 | 3 | 5 | 3 | 2 | 3 | 5 | 2 |
| An attacker denies charging via<br>wireless interference on the<br>charging cable                                                         | Grid & EV | 3.375 | 2 | 5 | 5 | 3 | 2 | 3 | 5 | 2 |
| An attacker leverages a large<br>number of EVs to abort charging,<br>causing undesirable grid impacts                                     | Grid & EV | 3.25  | 5 | 1 | 5 | 3 | 2 | 3 | 5 | 2 |
| Compromised DSO limits CSMS<br>load, impeding charging and CSMS<br>revenue                                                                | Grid & EV | 3.125 | 5 | 1 | 5 | 3 | 0 | 5 | 5 | 1 |
| An attacker abuses a compromised<br>EVSE to spread malicious code<br>onto vehicles while they charge                                      | Grid & EV | 2.75  | 5 | 2 | 5 | 3 | 0 | 3 | 3 | 1 |
| EVSE transactions lose non-<br>repudiation via CSMS compromise,<br>enabling an actor to provide free<br>electricity at one or many EVSEs  | Grid & EV | 2.625 | 5 | 1 | 5 | 3 | 0 | 1 | 5 | 1 |



| Attacker alters EVSE power<br>electronics firing angle, reducing<br>power factor correction                                              | Grid & EV                       | 1.875 | 3 | 1 | 3 | 2 | 2 | 2 | 1 | 1 |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------|---|---|---|---|---|---|---|---|
| Attacker modified cord set injects<br>15118 responses, causing a race<br>condition, so the EV connects<br>without TLS                    | Grid & EV                       | 1.875 | 2 | 1 | 5 | 3 | 0 | 1 | 0 | 3 |
| Physical tampering to force EVSE<br>into faulted state to prevent<br>charging                                                            | Grid & EV                       | 1.625 | 1 | 1 | 5 | 3 | 0 | 1 | 1 | 1 |
| An attacker gains access to the<br>EVSE and extracts confidential<br>data                                                                | Grid & EV                       | 1.5   | 3 | 1 | 2 | 3 | 0 | 1 | 1 | 1 |
| An attacker alters unencrypted data in transit                                                                                           | Implement<br>ers &<br>Operators | 3.375 | 5 | 3 | 5 | 3 | 0 | 3 | 5 | 3 |
| Attacker gains admin access by impersonating remote admin tools                                                                          | Implement<br>ers &<br>Operators | 3.375 | 5 | 3 | 5 | 3 | 0 | 3 | 5 | 3 |
| An attacker impersonates the client (EV, EVSE, App, etc.) with copied credentials                                                        | Implement<br>ers &<br>Operators | 2.25  | 4 | 2 | 5 | 3 | 0 | 1 | 2 | 1 |
| An attacker gains control of the<br>DNS server the device uses to<br>redirect configuration updates,<br>firmware updates, trusted entity | Implement<br>ers &<br>Operators | 2.125 | 5 | 1 | 5 | 2 | 0 | 2 | 1 | 1 |



| updates, certificate renewal, etc.<br>to a malicious server                                                     |                                 |       |   |   |   |   |   |   |   |   |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------|-------|---|---|---|---|---|---|---|---|
| EVSE requires physical servicing<br>following attack that causes a<br>faulted state                             | Implement<br>ers &<br>Operators | 1.625 | 1 | 1 | 5 | 2 | 0 | 2 | 1 | 1 |
| An attacker uses a privileged<br>physical connection to upload<br>malware or alter device<br>configuration data | Implement<br>ers &<br>Operators | 1.5   | 1 | 1 | 5 | 2 | 0 | 0 | 0 | 3 |
| An insider at a third-party vendor<br>executes unauthorized software<br>on a network host or device             | Implement<br>ers &<br>Operators | 1.375 | 5 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| An attacker prevents<br>communication from EVSE to<br>payment system                                            | Payment &<br>Billing            | 3.125 | 3 | 3 | 5 | 3 | 0 | 3 | 5 | 3 |
| Vehicle ECU swap to bill power transfer to someone else                                                         | Payment &<br>Billing            | 2.5   | 1 | 2 | 3 | 5 | 3 | 2 | 3 | 1 |
| EVSE cannot access necessary cloud services to process payment                                                  | Payment & Billing               | 2.375 | 1 | 1 | 5 | 3 | 2 | 3 | 1 | 3 |
| Payment interface requires<br>maintenance EVSE user account<br>creation with weak<br>password/credentials       | Payment &<br>Billing            | 2.25  | 1 | 3 | 5 | 3 | 2 | 1 | 1 | 2 |
| Payment system uses vulnerable third-party libraries                                                            | Payment & Billing               | 2.25  | 1 | 3 | 5 | 3 | 2 | 1 | 1 | 2 |



| Attacker leverages EVSE to modify  | Payment & | 1.875 | 5 | 1 | 5 | 1 | 0 | 1 | 1 | 1 |
|------------------------------------|-----------|-------|---|---|---|---|---|---|---|---|
| payment processing execution       | Billing   |       |   |   |   |   |   |   |   |   |
| flow or data path                  |           |       |   |   |   |   |   |   |   |   |
| Spoofed or cloned RFID allows      | Payment & | 1.75  | 1 | 0 | 3 | 5 | 2 | 2 | 1 | 0 |
| attacker to bill power transfer to | Billing   |       |   |   |   |   |   |   |   |   |
| another party                      |           |       |   |   |   |   |   |   |   |   |
|                                    |           |       |   |   |   |   |   |   |   |   |
|                                    |           |       |   |   |   |   |   |   |   |   |

Table 2 – EVSE Threat Scenarios HCE Rankings



# 6. Conclusions and Next Steps

In 2023, events in Europe have shown that nation states are willing and capable of using cyberwarfare as a means of disrupting infrastructure, such as telecommunications, food production, and energy production. EV charging infrastructure is critical for the transport sector of a nation; therefore, it is a target for both state-sponsored and organized crime; the differences between the two have become blurrier in past years. The digital, connected nature of EV charging infrastructure makes it vulnerable to malware, ransomware, Denial of Service (DoS) attacks, and other remote attacks that are defined in this white paper.

The scope of this white paper is limited to the EVSE charging station, which is central to the EV infrastructure, but the grid, EVSE vendor, payment, and operations are also targets for attackers, and the threat modelling of these entities is left as future work.

Identifying common threats relevant to the charging infrastructure model revealed some notable classes of threats and vulnerabilities, and other insight that bear highlighting, along with possible mitigations.

### 6.1. Key Future Considerations

The EV charging infrastructure requires a higher level of connectivity between the vehicle/driver and provider (EVSE) than any previously deployed transportation system. Users (drivers) interact with potentially dangerous power electronics of a voltage class previously only found in industrial applications, and normally only handled by qualified people.

The following are key future considerations:

#### Charging stations are a new type of public IIoT device

The term Industrial Internet of Things (IIoT) refers to interconnected sensors, instruments, and other devices networked together with computers' industrial applications, including manufacturing and energy management. While the compromise of a single charging station is not critical, the compromise of thousands of EVSEs simultaneously would be critical to national security. This means the infrastructure as a whole is vulnerable to systemic or architectural attacks.

IIoT and other critical devices used in commercial, retail, industrial, or similar contexts are traditionally implemented as closed ecosystems and not accessible by untrained personnel. Existing and similar public infrastructure devices (such as fuel pumps, ATMs, etc.) are normally operated on smaller scales and not widely connected. The highly connected and shared digital infrastructure required for future EVSEs is more similar to ICT infrastructure than traditional industrial device deployments.

#### Telemetry and EVSE charging planning data

If battery technology does not drastically improve, the user experience and charging time management must improve, in combination with data-driven deployment of charging stations. Planning infrastructure deployment requires telemetry of user behavior and volume along certain routes to measure and keep up with demand, including accounting for seasonal changes and events (e.g., concerts, sports, festivals, holidays, tourism, etc.). Gathering telemetry on how often chargers are used is necessary to plan infrastructure expansions.



On a separate scale, vehicles would also need to be able to plan routes and book timeslots for charging along the road for a trip, in order to accurately predict arrival times, including rebooking or rescheduling when delays occur. This is especially important for goods transport and food safety.

This telemetry and measurement data would be vulnerable to interception and manipulation, as well as privacy violations.

#### Recovery from cybersecurity attacks

Many malware threats are exacerbated if the EVSE is not capable of recovering from a compromise/attack via a secure remote firmware update mechanism. Without such a mechanism, recovery from compromise requires physical access, which is expensive and does not scale well. Mitigation requires hardware-based security, and a software secure enclave or secure state that the EVSE can go back to (i.e., erase compromised code and install trusted firmware). In addition, we have seen examples of state-sponsored malware groups pre-positioning by infiltrating critical infrastructure and lying dormant for months or years without detection, which means that the lack of malfunction does not mean a lack of infiltration.

#### Ongoing maintenance of trusted devices

The traditional mindset of "build-deploy-forget" used for embedded devices in the public space is not compatible with a world in which zero-day attacks are actively exploited 15 minutes after publication. Similar to the way in which websites establish secure connections to browsers, the use of a Public Key Infrastructure (PKI) is necessary to establish trust between charging stations, operators, vehicles, and vendors. PKI is a set of roles, policies, hardware, software, and procedures needed to create, manage, distribute, use, store, and revoke digital certificates<sup>10</sup> and manage public-key encryption<sup>11</sup> to facilitate the secure electronic transfer of information for a range of network activities such as e-commerce, internet banking and confidential email.

As with webhosts on the Internet, such a system requires maintenance, monitoring, and regular renewal of certificates.

#### End-of-life software support for power electronics

The maintenance and software hygiene required to keep a system secure also means that when a vendor decides to stop offering security patches for an EVSE product, due to the interconnectedness of the charging infrastructure, the infrastructure itself can become vulnerable to attack, not just the devices that are no longer supported. A single insecure networked device becomes a threat to the network, and its impact can extend beyond the vulnerable device itself, because it is part of a larger interconnected system. It is unclear how to handle such situations if charging stations are expected to last for decades.

If a device is no longer supported, who is responsible for maintaining it? For example, if a charging station no longer receives vendor security updates after five years, will the station be scrapped because it is a threat to the charging infrastructure? Discarding EVSE charging station hardware because the software is no longer updated seems contrary to some countries' pledges of reducing e-waste.

<sup>&</sup>lt;sup>10</sup> https://en.wikipedia.org/wiki/Public\_key\_certificate

<sup>&</sup>lt;sup>11</sup> https://en.wikipedia.org/wiki/Public-key\_cryptography



#### Continued operation of charging stations when the vendor ceases to exist

When goods, public, and private transport are all electrified and charging stations are critical to transport infrastructure (for example, ensuring perishable food is not damaged and causes safety concerns), there are questions around whether software will be required to be public or in escrow along with the private keys for the devices' Public Key Infrastructure (PKI). This would enable another vendor to take over maintenance and updates. In Europe, other types of critical infrastructure are regulated to ensure continuity and shared access.

There is also a challenge in notification when EVSE charging stations are no longer maintained. Unless reporting is mandatory, vulnerable charging stations could continue to operate without anyone being aware of it. Operators will need to be audited to ensure the charging stations they are responsible for are updated, and that they are still supported by the vendor.

#### **Insider attacks**

Even if there is an architectural assumption that only legitimate CPOs, vendors, payment services, and other trusted parties have access to the infrastructure, it is still vulnerable to insider attacks.

As with any large public architecture, bad actors are a threat: These are actors that can get into the system via legitimate means and become an inside attacker. It is entirely possible to spoof any of the companies in the EVSE ecosystem and gain access to critical data/systems as a trusted entity.

#### 6.2. Mitigations

This section contains suggestions of known mitigations for the threats presented in this white paper.

#### 6.2.1. Meta-mitigations for Systemic and Architectural Threats

As mentioned in a previous section, there are classes of threats to the charging system itself which will require mitigations:

- High connectivity of an Industrial Internet of Things (IIoT) device
  - Mandatory security features in EVSE devices, on par with mandatory EMI, fire safety, etc.
     Conformance testing will be needed. Focus on resilience, monitoring, and recoverability.
  - The adoption of a security framework, e.g., IEC 62443 (Security for Industrial Automation and Control Systems, and mandatory full (or partial) compliance with it. This is already the strategy for other industrial sectors, e.g., marine societies.
- Gatekeeping, monopolies/cartels, vendor lock-in, proprietary extensions:
  - An existential threat to any widely deployed, shared public architecture, is the motivation of companies to monopolize, gatekeep, use vendor lock-in, use patents, use proprietary protocols/formats, and otherwise interfere with an ecosystem to dominate parts of it at the expense of users. Traditionally, such threats to the architecture can be mitigated with open standards and regulatory enforcement to use them.
  - Mandatory compliance with harmonized standards. The EU is already moving towards this standards-based approach (e.g., CCS2 plug standard).
  - Be aware that cryptography makes it very easy to create artificial incompatibility its very purpose is to block actions. Require the use of open standards for communication and security protocols without proprietary extensions that seek to undermine compatibility.



- Mandatory compatibility for payments: currently in the EU there is a patchwork of different loyalty card schemes for accessing charging stations. Similarly in the United States payment system implementations differ across vendors, contain a mix of payment as a service or APIs, and do not currently offer unified models or architectures.
- There are already consultancy companies selling ways to integrate EV charging into rewards, discounts, offers, points-based programs, and other loyalty schemes, all of which potentially influence the mass transit networks of cities.
- The car transit network and its business model are very different from traditional, regulated fuel prices and oil companies. There needs to be price regulation on publicly accessible charging stations.
- Security infrastructure and PKI
  - Require use of standardized PKI methods and providers. Mandatory processes for handover of secrets for sunsetting companies, to ensure business continuity.
  - Annual compliance cybersecurity testing of PKI and security infrastructure for vendors.
  - Mandatory secure recovery functionality for EV charging stations. Considering the capabilities of state-level malware, the assumption must be that it is possible to compromise the connected network of EV charging stations and inject malware. There must be an agreed recovery method from such an attack that vendors have implemented in devices, or at least they must be liable for fixing their devices when they are attacked. Any recovery method, like any backup method, must be regularly exercised to prove it is still working.
  - Develop vetting procedures for companies that deploy EVSE infrastructure networks and APIs. Establish proper trust boundaries that still assume hostile actors can become part of the infrastructure and payment networks.

#### 6.2.2. Mitigations for EVSE Devices and Organizations

The threat model in Appendix A: Threat Model Details lists mitigations for each threat in more details, but there are a few general principles that should also be followed.

To achieve security, defense-in-depth must be used; in general, this means that mitigations must overlap, and multiple mitigations are necessary for each threat, because one will inevitably fail, and it will be unknown which one will fail.

The design principles in *The protection of information in computer systems* (Saltzer & Schroeder, 1975) are still sound. EV charging stations should be secure-by-design due to what they actually are: highly critical, highly exposed, highly connected, highly attractive targets for cybercriminals to conduct malicious harm to national security and obtain financial gains. EVSEs are not traditional industrial systems that live in a closed ecosystem, they are exposed to the worst of the Internet, and cannot be fully physically secured.

It is important to both be specific about implementations of mitigations and to evaluate them regularly. For instance, a mitigation might add the TLS protocol to a communication channel, but there are many ways to implement TLS without actually making it secure, such as:

- Not making it mandatory to use TLS, or by allowing insecure ciphers
- Allowing downgrade attacks, by only mandating authentication of the server and not the client
- Not securing the Public Key Infrastructure that manages device identities and trust
- Not updating the software libraries when vulnerabilities are found



Traditional industrial development and deployment methods have been focused on time-to-market and request queues of new features for customers. Unfortunately, this comes at the expense of software quality and security especially. This is apparent from research into the state of security in Industrial Internet of Things devices (AI-Zahrani, 2023), (Marianna Lezzi, 2018), (Serror, 2021),Operational Technology (Sisinni, Saifullah, Han, Jennehag, & Gidlund, 2018), vulnerability reports<sup>12</sup> and advisories for Industrial Control Systems (ICS)<sup>13</sup>,<sup>14</sup>, etc.

Security management is about focusing on code robustness, continuous implementation of a Secure Development Life Cycle (SDLC) process, and security patch distribution. Compliance with a framework such as IEC 62443 (security in industrial automation and control systems), the ISO 27000 series (security and risk assessments of ICT systems), and the NIST 800 series (security and risk assessment of ICT systems) shows that a vendor has not only understood this, but also implemented it in their development processes.

<sup>&</sup>lt;sup>12</sup> https://www.forbes.com/sites/chuckbrooks/2023/03/05/cybersecurity-trends--statistics-for-2023-more-treachery-and-risk-ahead-as-attack-surface-and-hacker-capabilities-grow/

<sup>&</sup>lt;sup>13</sup> https://cve.ics-csirt.io/cve

<sup>&</sup>lt;sup>14</sup> https://www.cisa.gov/news-events/cybersecurity-advisories



# 7. Frameworks and Harmonized Standards

Several references and standards exist to create a comprehensive look at how to operate, secure, and protect EVSEs. Furthermore, these can be combined with industry standard documents such as MITRE's ATT&CK framework and the OWASP Top Ten, which are applicable but do not specifically address EVSE, to create more detailed and tailored recommendations to organizations. This section will highlight each of these standards and references at a high level to provide background into existing EVSE cybersecurity work.

#### IEC 62443<sup>15</sup> Cybersecurity for Industrial Control and Automation Systems

This standard outlines a security profile for SCADA/ICS, OT and IoT devices which aligns well with components and technology used within EVSEs and interface systems. These commonalities allow for portability of this standard to this specific application which offer a good starting point for assessing EVSE development, production, and operation.

#### OWASP Top Ten<sup>16</sup>

This list is a periodic survey, aggregation, and analysis of top web application vulnerabilities based on a survey of security professionals.

#### MITRE ATT&CK Framework<sup>17</sup>

A knowledgebase of tactics, techniques, and procedures for adversary behavior. There are databases for enterprise systems, mobile devices, and Industrial Control Systems. The information is based on threat intelligence and incident reports. Furthermore, ATT&CK contains threat profiles and known tools, tactics, and procedures for threat groups and APTs.

#### ISO 27000 Series<sup>18</sup>

The ISO 27000 series is a collection of standards for IT security that cover the complete lifecycles of patch management, risk assessment, security for network, applications, storage, systems, privacy, and other systems.

<sup>&</sup>lt;sup>15</sup> https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards

<sup>&</sup>lt;sup>16</sup> <u>https://owasp.org/www-project-top-ten/</u>

<sup>&</sup>lt;sup>17</sup> <u>https://attack.mitre.org/matrices/ics/</u>

<sup>&</sup>lt;sup>18</sup> https://www.iso.org/standard/iso-iec-27000-family



#### NIST SP 800 Publications<sup>19</sup>

The NIST SP 800 publications cover security and risk management, in a similar way to the ISO 27000 series. SP 800-53<sup>20</sup> in particular is about security and privacy controls for IT. Other SP 800 standards cover frameworks for risk assessments, software development lifecycles, etc.

#### ISO 15118-2<sup>21</sup> and 15118-20<sup>22</sup>

These two standards outline implementations and specifications for EV to EVSE communications during a charging session, mainly within the networking layer.

#### **Open Charge Point Protocol (OCPP)**<sup>23</sup>

OCPP represents the main protocol stack that EVSEs use to communicate power demands. Currently, two main versions of the protocol are in use: OCPP 1.6 and 2.0, which both utilize WebSockets for communication, but have slightly different architectures, guarantees, and implementations.

#### Idaho National Laboratory (INL) High Consequence Events (HCE)<sup>24</sup>

This methodology takes INL's previous approach towards calculating risk exposure with consideration to resilience with the premise that certain events may not occur frequently, but their existence poses an asymmetric risk to operational capabilities. This quantitative methodology augments traditional risk calculation which depends on threat, vulnerability, and consequence by adding an additional impact feature.

#### ISO/SAE 21434: Road Vehicles – Cybersecurity Engineering<sup>25</sup>

ISO/SAE 21434 is an international standard that defines the requirements and processes for cyber security engineering in road vehicles.

<sup>&</sup>lt;sup>19</sup> https://csrc.nist.gov/publications/sp800

<sup>&</sup>lt;sup>20</sup> <u>https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final</u>

<sup>&</sup>lt;sup>21</sup> <u>https://www.iso.org/standard/55366.html</u>

<sup>&</sup>lt;sup>22</sup> <u>https://www.iso.org/standard/77845.html</u>

<sup>&</sup>lt;sup>23</sup> <u>https://www.openchargealliance.org</u>

<sup>&</sup>lt;sup>24</sup> <u>https://www.sae.org/publications/technical-papers/content/2023-01-0047/</u>

<sup>&</sup>lt;sup>25</sup> <u>https://www.sae.org/standards/content/iso/sae21434/</u>



# 8. References

- Al-Zahrani, F. S. (2023). Industrial Internet of Things: A Cyber Security Perspective Investigation. 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC). doi:10.1109/ICAISC56366.2023.10085080
- Carlson, B., Rohde, K., Crepeau, M., Salinas, S., Medam, A., & Cook, S. (2023). SAE. Retrieved from https://www.sae.org/publications/technical-papers/content/2023-01-0047/
- evadoption. (2018). Retrieved from https://evadoption.com/ev-sales/evs-percent-of-vehicle-sales-by-brand/
- Kohnfelder, L., & Garg, P. (1999, April 1). The threats to our product. Retrieved from https://web.archive.org/web/20230701095532/https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
- Marianna Lezzi, M. L. (2018). Cybersecurity for Industry 4.0 in the current literature: A reference framework. In *Computers in Industry* (Vol. 103, pp. 97-110). doi:https://doi.org/10.1016/j.compind.2018.09.004.
- Saltzer, J., & Schroeder, M. (1975, September). The protection of information in computer systems. *Proceedings of the IEEE*. Retrieved from https://ieeexplore.ieee.org/document/1451869/authors#authors
- Serror, M. a. (2021). Challenges and Opportunities in Securing the Industrial Internet of Things. *IEEE Transactions on Industrial Informatics*, 17(5), 2985-2996. doi:10.1109/TII.2020.3023507
- Shostack, A. (2014). Threat Modeling: Designing for Security. Wiley.
- Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of Things: Challenges, Opportunities, and Directions. *IEEE Transactions on Industrial Informatics*, 4724 - 4734.
- Tausendteufel, F. (2022, May). Agora Verkehrswende. Retrieved from https://www.agoraverkehrswende.de/veroeffentlichungen/automobilhersteller-und-ihre-elektrifizierungsziele/



# **Appendix A: Threat Model Details**

An initial version of the threat model is captured in Appendix; however, as previously stated, this is a mutable document that the authors intend to be revised and updated over time as EVSEs evolve. As such, these findings are presented as a starting point for discussion and inclusion within organization-specific threat models and risk assessments. These findings may have limited applicability within specific organizations and more applications within others, which this working group aims to satisfy by creating a core model which can be extended as needed (see Threat Model Assumptions in section 5.1.2 of this document).

# A.1. Threat Model Dataflow Diagrams

Each diagram represents the dataflow of a part of the EVSE and an external system. The labels correspond to the labels in the threat scenarios in section A.3 showing the approximate logical location of a threat in these high-level dataflow models.



Figure 4. TO diagram, High-Level Architecture





Figure 5. T1 diagram, EV to EVSE



Figure 6. T2 diagram, EVSE to User





Figure 7. T3 diagram, EVSE to CPO



Figure 8. T4 diagram, standalone EVSE





Figure 9. T5 diagram, CPO to EVSE



Figure 10. T6 diagram, EVSE to payment system



### A.2. Charging Infrastructure Architecture Model

This high-level architecture model shows the entities involved in EV charging transactions. The threat modelling in this white paper was focused on the EVSE since it is the most vulnerable element in the infrastructure.



Figure 11. Charging Infrastructure with attack vectors



### A.3. Complete Table of Threat Scenarios

Each scenario in this table includes the following information:

ID: Unique ID of the entry in the table.

Ref: A label that references the diagrams in Appendix A.1 showing approximately where the threat is located in the architecture.

Threat Scenario: This is a description of the beginning and conclusion of a threat. At minimum, these are a sentence that have an entity and a vulnerable element, component, or subsystem.

Threat: This column connects the threat scenario to STRIDE.

Attack Vector: The definition of each of these terms is from the CVSS v3.1 specification document<sup>26</sup>. Their definitions were applied to our model, so they served the authors for inspiration more than being applied literally. As this document uses the following terms:

- "Network" is a remote attack vector, typically across the internet or a geographically distant location, such as an operator cloud.
- "Adjacent" means the attack vector is bound to a network stack but the attack is limited to a logically adjacent network.
- "Local" attack vectors are local to the network. This is distinct from network and adjacent because those threat vectors have a router or gateway in-between attacker and vulnerable component.
- "Physical" attack vectors are defined as those requiring the malicious agent to physically touch the specific component.

Impact On: The stakeholder that could be impacted by a given threat scenario (see Section 4.2 for details):

- Generic: These did not fit in one of the other categories or were highly likely to impact more than one category.
- Grid & EV: These are threat scenarios to the grid and EV.
- Implementers & Operators: These are threat scenarios to implementers & operators, which includes CPOs and EVSEs.
- Payment & Billing: These are threat scenarios to the payment & billing stakeholders.

Vulnerability: Some characteristic that makes it possible for a threat to occur.

Mitigation: Security control, risk reduction.

HCE Severity score: See Table 1 in Section 5.2.

<sup>&</sup>lt;sup>26</sup> <u>https://www.first.org/cvss/v3.1/specification-document</u>



| ID         | Ref                                | Threat Scenario                                                                                                                                                                                                                                                                                                | Threat                     | Attack<br>vector | Impact on                   | Vulnerability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mitigations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HCE<br>Severity<br>Score | Level of<br>Impact | Magnitude | Duration | Recovery<br>Effort | Safety | Costs | Effect<br>Propagation<br>Beyond EV<br>or EVSE | EV Industry<br>Confidence,<br>Reputation<br>Damage |
|------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|-----------|----------|--------------------|--------|-------|-----------------------------------------------|----------------------------------------------------|
| A65        | T4_D, T4_A                         | An attacker manipulates the wall clock (absolute<br>time) of a device to allow expired credentials or<br>signatures to become valid. The attack can be<br>local by changing the configuration of a device,<br>or intercepting the time update queries of a<br>device, or global by controlling the time server | Tampering                  | Network          | Implementers &<br>Operators | Embedded devices usually do not have secure time circuits. RTC can be<br>manipulated or disabled, or may not exist because the vendor saved the cost.<br>Credentials expire so they do not need to be revoked, so expired credentials<br>would not be discoverable in another way (e.g. OCSP/CRL). Certificates and<br>signatures are all reliant on the device knowing the correct time and date.<br>Expired credentials are not protected, and it is not considered a security breach<br>if, e.g. laptops or devices with expired credentials are stolen or compromised. | Secure time circuits on the device. Device implements the secure version (only) of NTP.<br>Use standard trusted NTP pools, not vendor-specific servers or untrusted servers.<br>Fallback mechanism when time is not known, or has not been updated, rather than<br>assume the default bootup start time is secure or safe to use.<br>Expired credentials are more easily obtained by attackers, because they are usually not<br>protected as well as active credentials. This means expired credentials can be stolen or<br>bought more easily.                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.25                     | 1                  | 5         | 3        | 5                  | 5      | 5     | 5                                             | 5                                                  |
| A102       | T4                                 | EVExchange: Given chargers C1 and C2, vehicles<br>(A)ttacker and (V)ictim, the cordsets are<br>tampered such that power flows from C1 to A, C2<br>to V, but communication from C1 is tied to V, C2<br>is tied to A. The victim then pays for the<br>Attacker's power transfer.                                 | Tampering                  | Physical         | Payment & Billing           | Assumption that power and communications terminate at the same charger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Regularly inspect charging facilities looking for signs of tampering. Incorporate tamper<br>resistantance into facilities and equipment. Monitor customer accounts for atypical<br>usage.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M. Conti, D. Donadel, R. Poovendran, and F. Turrin,<br>"EVExchange: A relay attack on electric vehicle charging<br>system," in Computer Security–ESORICS 2022, ser.<br>Lecture Notes inComputer Science, vol. 13554, 2022, pp.<br>488–508.                                                                                                                                                                                                                                                        | 4.00                     | 5                  | 5         | 5        | 4                  | 2      | 3     | 5                                             | 3                                                  |
| A34        | T4_E                               | Payment system may include vulnerable third<br>party libraries which may lead to inadvertant<br>path to EVSE access                                                                                                                                                                                            | Repudiation                | Network          | Payment & Billing           | Insufficient updating on processor system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Establish and maintain a regular patch window for processor software and dependencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.88                     | 1                  | 4         | 4        | 5                  | 3      | 4     | 5                                             | 5                                                  |
| А9         | T1_A                               | A large body of vehicles simulatenously abort<br>charging, decreasing demand, causing voltage<br>and frequency transients, thereby causing<br>generator trip offs                                                                                                                                              | Denial of Service          | e Network        | Grid & EV                   | e.g., the attacker compromises OEM cloud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Perform Security assessments on all supply chain providers and components to promote<br>end-to-end security and reliability and reduce supply chain risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S. Acharya, Y. Dvorkin and R. Karri, "Public Plug-in Electric<br>Vehicles + Grid Data: Is a New Cyberattack Vector<br>Viable?," in IEEE Transactions on Smart Grid, vol. 11, no.<br>6, pp. 5099-5113, Nov. 2020, doi:<br>10.1109/TSG.2020.2994177. Carlson, B., Rohde, K.,<br>Crepeau, M., Salinas, S. et al., "Consequence-Driven<br>Cybersecurity for High-Power Electric Vehicle Charging<br>Infrastructure," SAE Technical Paper 2023-01-0047,<br>2023, https://doi.org/10.4271/2023-01-0047. | 3.75                     | 5                  | 5         | 3        | 4                  | 0      | 4     | 4                                             | 5                                                  |
| A101       | T1_A, T2_D                         | An attacker modifies the cordset, allowing her to<br>inject SDP responses with the security set to<br>0x10, "No transport layer<br>security." A race condition occurs, the EV prefers<br>the earlier over the later response from the<br>charger. The EV then connects without<br>employing TLS                | Tampering                  | Adjacent         | Grid & EV                   | TLS downgrade attack. In ISO 15118-2 a vehicle has option to connect to insecure charger.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | At the charger, monitor for SDP responses that differ from the ones sourced by the charger. Once TLS becomes widely available, don't offer insecure connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M. Zhdanova, J. Urbansky, A. Hagemeier, D. Zelle, I.<br>Herrmann, and D. H'offner, "Local power grids at risk-an<br>experi-<br>mental and simulation-based analysis of attacks on<br>vehicle-to-grid communication," in Proc. of the 38th<br>Annual Computer<br>Security Applications Conf, (ASAC), 2022, pp. 42–55.<br>Requires physical access, not scalable, does not prevent<br>charging services                                                                                             | 3.63                     | 2                  | 5         | 5        | 4                  | 2      | 3     | 5                                             | 3                                                  |
| A81        | T4_F                               | An attacker gains access to a device and alters the<br>log files to add events that never occurred, or<br>modify existing events                                                                                                                                                                               | Repudiation                | Local            | Implementers &<br>Operators | Unprotected log files can be altered to hide malicious activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Protect log files. Protect security events or security logs with stronger protections.<br>Securely transfer logs to remote servers and ensure log services on the device are securely<br>separated from user privileges or user space, so a compromised device cannot be made<br>to stop logging or sending logs externally with evidence of compromises.                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.63                     | 5                  | 5         | 5        | 4                  | 0      | 4     | 5                                             | 1                                                  |
| A79        | T4_D, T4_A                         | An attacker gains access to a device by<br>negotiating the connection to a less secure one,<br>which has known vulnerabilities                                                                                                                                                                                 | Elevation of<br>Privileges | Network          | Generic (non-<br>specific)  | Downgrade attacks are a known problem, in which the attacker negotiates a<br>cipher suite that has known vulnerabilities, or simply contains NULL ciphers.                                                                                                                                                                                                                                                                                                                                                                                                                 | Use the latest patched versions of crypto libraries.<br>Ensure crypto libraries and TLS or other connectivity session contexts are configured to<br>only allow known secure cipher suites, i.e. not null ciphers, or ciphers that have known<br>vulnerabilities (MD5, SHA1, RC4, DES, anything with short keylengths, NULL, etc. etc.<br>The graveyard of insecure ciphers keeps growing.)<br>NIST and ENISA issue guidance on which ciphers and keylengths to use, depending on the<br>expected lifetime of devices/secrets. These recommendations change over time, so<br>vendors must be able to update cipher lists in deployed devices |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.63                     | 5                  | 5         | 3        | 3                  | 0      | 5     | 3                                             | 5                                                  |
| A73        | T4_E                               | A third-party vendor (inside attacker) decides to<br>run unauthorised software on the devices                                                                                                                                                                                                                  | Tampering                  | Network          | Implementers &<br>Operators | Third-party libraries/apps/code may change unexpectedly. There are cases of<br>third-parties deciding to 'update' their code to run bitmining or other CPU-<br>heavy activities on devices, or implement 'telemetry' that sends device data back<br>to their servers, often without proper privacy or encryption protection<br>measures.                                                                                                                                                                                                                                   | Examine changes to third-party libraries before updating them on devices. Be able to patch devices in a reasonable timeframe if a third-party library/app needs to be replaced, or is found to violate your security policies.                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.50                     | 5                  | 4         | 4        | 4                  | 2      | 4     | 0                                             | 5                                                  |
| A12        | T4_C01, T5_C                       | Attacker intercepts and manipulates OCPP traffic<br>sent to and from the EVSE to gather customer or<br>EVSE information.<br>(most likely MITM scenario is from the local<br>charging infra and within the backend infra.<br>With prooper secure channels a MITM scenario<br>shoult not exist.)                 | Information<br>Disclosure  | Network          | Implementers &<br>Operators | Authentication - OCPP 1.6J allows the use of TLS 1.0 and 1.1, which are officially deprecated                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Use TLS v1.2 or OCPP 2.0.1 which requires TLS v1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.50                     | 3                  | 5         | 5        | 3                  | 2      | 3     | 5                                             | 2                                                  |
| A67        | T4_A, T4_D,<br>T4_C, T4_F          | An attacker gains remote access to device due to credential stuffing, or weak credentials                                                                                                                                                                                                                      | Spoofing                   | Network          | Implementers &<br>Operators | Use of weak/guessable credentials, passwords, single factor authentication,<br>reused credentials, etc. makes devices vulnerable to attacks                                                                                                                                                                                                                                                                                                                                                                                                                                | Use a proper PKI, certificates, asymmetric keys, signed messages, multi-factor<br>authentication, etc. for device authentication access.<br>Do not use passwords/shared secrets/symmetric keys/PSK/single-factor<br>authentication/etc. for Machine to Machine communication. Do not reuse credentials,<br>do not generate credentials based on serial number, MAC address, or other guessable<br>sources.<br>Separate remote access methods from local/service access methods, if local usability is a<br>concern (i.e. don't implement password and PIN for remote access just because you need<br>it for local access).                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.50                     | 5                  | 1         | 5        | 5                  | 2      | 3     | 5                                             | 2                                                  |
| A63        | T4_D                               | An attacker gains access to servers or channels<br>that were thought to be secure, because the EVSE<br>vendor ceases to exist.                                                                                                                                                                                 | Spoofing                   | Network          | Generic (non-<br>specific)  | When a vendor ceases to operate, their domain name and other hardcoded<br>endpoints can be resold to malicious actors. In principle, if someone buys their<br>assets they will also take over the crypto keys and can issue signed updates                                                                                                                                                                                                                                                                                                                                 | Malicious actors can purchase assets, including cryptographic keys from a bankrupt<br>vendor.<br>The architecture shall not assume that all participating companies in backend<br>communication are benign or cannot be compromised.<br>Trust shall be revokable when a company ceases to operate, or begins acting maliciously<br>for any reason.                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.38                     | 5                  | 2         | 3        | 3                  | 3      | 3     | 4                                             | 4                                                  |
| A60        | T4_A                               | An attacker exploits remote side-channel attacks<br>against an EVSE/EV/App to gain privileged access<br>or copy credentials (timing attacks, oracle<br>attacks, etc.)                                                                                                                                          | Information<br>Disclosure  | Network          | Implementers &<br>Operators | Cryptographic algorithms in common use are vulnerable to timing attacks<br>unless whitening functions are applied                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Use secure and tested crypto libraries with whitening functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.38                     | 5                  | 3         | 3        | 3                  | 3      | 3     | 4                                             | 3                                                  |
| A40        | T5_F                               | MSP adds insecure extensions to OCPP 2.0.1<br>allowing root access                                                                                                                                                                                                                                             | Elevation of<br>Privileges | Network          | Implementers &<br>Operators | Insecure coding practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Better developer training or testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.38                     | 5                  | 3         | 5        | 3                  | 0      | 3     | 5                                             | 3                                                  |
| A21        | T4_A                               | An attacker reverse engineers Hardcoded<br>Payment identifiers for free charging                                                                                                                                                                                                                               | Spoofing                   | Adjacent         | Payment & Billing           | Hardcoded credentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Make the payment identifiers more fluid, change them for every transaction or after a set amount of time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicate of A14? Not a duplicate. A14 is a single person<br>abusing hardcoded credentials, A21 represents someone<br>who reverse engineered the credentials. The word "leaks"<br>was removed.                                                                                                                                                                                                                                                                                                    | 3.38                     | 5                  | 3         | 5        | 3                  | 0      | 3     | 5                                             | 3                                                  |
| A82        | T4_F                               | An attacker gains access to a device and alters the<br>log files because they are not protected, or do<br>not require elevated privileges to access                                                                                                                                                            | Tampering                  | Local            | Implementers &<br>Operators | Unprotected log files can be altered to hide malicious activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Protect log files. Protect security events or security logs with stronger protections.<br>Securely transfer logs to remote servers and ensure log services on the device are securely<br>separated from user privileges or user space, so a compromised device cannot be made<br>to stop logging or sending logs externally with evidence of compromises.                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.38                     | 5                  | 3         | 5        | 3                  | 0      | 3     | 5                                             | 3                                                  |
| A95        | T5_D                               | Attacker tampers with the Aggregator-Utility capacity forecasts                                                                                                                                                                                                                                                | Tampering                  | Network          | Grid & EV                   | Aggregator misrepresents capacity or vehicles available for bidirectional power transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | asks "does this capacity forecast look correct? Or a machine asks the same question "Is<br>this capacity forecast within 5 percent of what I expect? If not, then flag for human<br>review")                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.38                     | 4                  | 3         | 5        | 3                  | 2      | 3     | 5                                             | 2                                                  |
| A47        | T1_A                               | An attacker circumvents AuthN/AuthZ<br>mechanisms by performing debug attacks during<br>power cycle                                                                                                                                                                                                            | Elevation of<br>Privileges | Physical         | Implementers &<br>Operators | Active unprotected debug routine that can by triggered on powercyce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Disable debug routine for devices in the field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.38                     | 3                  | 5         | 5        | 4                  | 0      | 4     | 5                                             | 1                                                  |
| A38        | T4_C, T4_G,<br>T4_F, T4_D,<br>T4_A | An attacker gains access to a charger and installs<br>malware on it that will install malware on EVs<br>that charge using that charger                                                                                                                                                                         | Tampering                  | Network          | Grid & EV                   | Malware is introduced to the EVSE via some attack. The malware can spread to the EV via the communication channel when the EV connects to charge.                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitor EVSEs for malware. Monitor EVS for malware. Penetration testing on the communication stacks in both EVSE and EV; malware is likely to spread via a buffer overflow or vulnerability in the stack implementations, more than via a legitimate data transfer. Keep communication stacks up to date, ensure vulnerabilities are found, patched, and distributed to all EVSEs and EVs.                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.25                     | 3                  | 1         | 5        | 5                  | 2      | 3     | 5                                             | 2                                                  |
| A44        | T4_D                               | An attacker gains access to the unsecured EVSE<br>network infrastructure via the Internet<br>Attacker leverages EVSE to modify payment                                                                                                                                                                         | Tampering                  | Network          | Implementers &<br>Operators | Missing Network Segmentation, exposure of critical components on the internet<br>If payment processor resides on EVSE hardware/software attacker leverages EVSE                                                                                                                                                                                                                                                                                                                                                                                                            | Network segmentation, VPN, Zero Trust Design approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | How is this different from A192 (more detail peeded)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.25                     | 5                  | 5         | 5        | 3                  | 0      | 2     | 5                                             | 1                                                  |
| A32<br>A23 | т4_в<br>Т5_D                       | processing execution flow or data path An actor compromises DSO via phishing -> escalation of privilege to admin to limit CSMS                                                                                                                                                                                 | Spoofing                   | Network          | Grid & EV                   | control to affect processor functionality People or unnecessarily exposed email address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Better training/non-guessable email addresses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | now is this different from ALOF (more detail needed)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.13                     | 5                  | 1         | 5        | 3                  | 2      | 3     | 5                                             | 4                                                  |
| A75        | Ecosystem                          | load, impeding charging<br>A vendor (inside attacker) creates patents or<br>other vendor-locked implementations of parts of<br>the system architecture to remove free                                                                                                                                          | Tampering                  | Network          | Generic (non-<br>specific)  | Maximising the cost of switching to competitors is an objective for vendors.<br>These implementations live in the margins of standards, or where standards are                                                                                                                                                                                                                                                                                                                                                                                                             | Ensure that open standards are made available which are comprehensive enough to prevent anti-competitive behaviour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.13                     | 5                  | 1         | 5        | 3                  | 2      | 3     | 5                                             | 1                                                  |
| Δ55        | ть а те м                          | competition An attacker connects to the network using copied client credentials and impersonates the                                                                                                                                                                                                           | Spoofing                   | Network          | Implementers &              | Usage of user credentials that are easily duplicated, e.g. passwords or symmetric keys, give attackers privileged access that is effectively genuine and you difficult                                                                                                                                                                                                                                                                                                                                                                                                     | Use credential types that are difficult to duplicate, e.g. asymmtric keys, zero knowledge<br>and challenge protocols, and use multi-factor authentication that are not all                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 12                     | Δ                  | 2         | E        | 2                  | 2      | 2     | E                                             | 1                                                  |
| A25        | T5_D                               | CSMS transmits false data to DSO to cause                                                                                                                                                                                                                                                                      | Spoofing                   | Network          | Operators<br>Grid & EV      | to block or detect without additional context                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stored/originating from the same device<br>The utility can possibly check other loads or use out of band measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSMS is the same as CPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.13                     | 4                  | 4         | 2        | 1                  | 3      | 4     | 5                                             | 2                                                  |
| A49        | T4_C, T4_G                         | An attacker use diagnostic port access to alter<br>power electronics firing angle, thereby reducing                                                                                                                                                                                                            | Tampering                  | Physical         | Grid & EV                   | Exposed diagnostic port allows access to low-level power electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Do not expose diagnostic port. Do not have hardcoded maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Assumption: physical access<br>Method: exposed or easily revealed diagnostic port (USB,                                                                                                                                                                                                                                                                                                                                                                                                           | 3.13                     | 1                  | 5         | 3        | 5                  | 0      | 4     | 3                                             | 4                                                  |
| A33        | T4 A                               | power factor correction<br>Payment interface requires maintenance EVSE<br>user account creation with weak                                                                                                                                                                                                      | Elevation of               | Network          | Payment & Billing           | configurations<br>Poor business/IT practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | passwords/backdoors. Two-factor authentication on diagnostics access Do not rely on custodial accounts with easy to guess or hard coded passwords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RS-232, SSH, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.13                     | 1                  | 3         | 3        | 4                  | 2      | 3     | 4                                             | 5                                                  |
|            |                                    | password/credentials An attacker persistently DDoSes OCSP                                                                                                                                                                                                                                                      | Privileges                 |                  | Implementers &              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAs need to scale out the OCSP responders; Operators need to build out infrastructure to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OCSP responders are operated by CAs as part of their responsibilities. In Webpki, inability to contact OCSP                                                                                                                                                                                                                                                                                                                                                                                       |                          |                    | -         | -        |                    | -      | -     |                                               |                                                    |
| A41        | Т5_В                               | responders, keeping CSMSs from obtaining up-to-<br>date Certificate Status responses                                                                                                                                                                                                                           | Denial of Service          | e Network        | Operators                   | OCSP responders are a bottleneck, often a DDoS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | improving response caching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | responders is treated as fail open, that is, assume that<br>verification success.                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.00                     | 3                  | 3         | 3        | 3                  | 3      | 3     | 4                                             | 2                                                  |



| A91  | T5_E                      | Attacker uses EVSE to bridge into station operator network                                                                                                                                                                                                                                           | Tampering                  | Local      | Implementers & Operators    | Operators trusting the network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Apply zero trust network architectures. Continuous authentication and authorization to tailor access to EVSE behaviors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | 3.00 | 2 | 3 | 5 | 3 | 0 | 3 | 5 | 3 |
|------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|---|---|---|---|---|---|---|---|
| A68  | T4_D, T5_A,<br>T6_A, T6_B | An attacker alters data in transit through a proxy<br>(MitM attack) because the data is not encrypted<br>end to end                                                                                                                                                                                  | Tampering                  | Network    | Implementers &<br>Operators | "Secure link-based systems", i.e. systems that are based on authentication (and<br>optional encryption) between each link in the network are inherently insecure if<br>a single link can be compromised, and there is no way to detect this at the<br>endpoints. Such systems are common in the world of embedded devices, with<br>concepts such as brokers/aggregators/proxies, and symmetric link-encryption.<br>Ideally, the sender of a message knows the cryptographic identity of the receiver,<br>and can dedicate the message to the receiver (mutual authentication), or at least<br>the sender can sign the message to prove its origins, and the receiver is expecting<br>the message, and can check for freshness. | Use PKI and identities to authenticate messages. Use challenge-response protocols to<br>ensure freshness of messages, and prevent replay attacks.<br>Do not use systems where proxies are able to recover a message payload and repackage it,<br>effectively removing the proof of origin. The endpoint that consumes the payload must<br>be the same endpoint that the message is dedicated to.                                                                                                                                                                                                                                                                                                                      |                                                                                                        | 3.00 | 5 | 3 | 3 | 3 | 2 | 2 | 3 | 3 |
| A72  | T5_C                      | An attacker compromises privacy or sensitive<br>data by compromising the cloud hosting<br>provider of the vendor or operator                                                                                                                                                                         | Information<br>Disclosure  | Network    | Generic (non-<br>specific)  | Vendors may choose to outsource their cloud infrastructure, meaning they do<br>not own the endpoints that their devices communicate with. Cloud providers<br>can be coerced, or simply not compliant with security policies.<br>Secure breaches in cloud hosting solutions are also frequently due to<br>misconfigurations, or bad default permissions on access.<br>Private data require special attention and is under regulation.                                                                                                                                                                                                                                                                                           | Self-hosting of critical infrastructure for privacy and sensitive data. Proper security<br>policies for data processing and storage.<br>Only outsource of less critical data collection functions.<br>Only use cloud providers that are security and privacy compliant and regulated.<br>Do not host services in countries that may have an interest in disabling the charging<br>infrastructure in the countries you operate in.                                                                                                                                                                                                                                                                                     |                                                                                                        | 3.00 | 5 | 1 | 5 | 3 | 2 | 2 | 5 | 1 |
| A24  | T5_C                      | EVSE transactions lose non-repudiation via CSMS<br>compromise, enabling an actor to provide free<br>electricity at one or many EVSEs                                                                                                                                                                 | Repudiation                | Network    | Grid & EV                   | CSMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSMS protections (MFA, monitoring, RBAC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        | 3.00 | 5 | 1 | 5 | 3 | 2 | 2 | 5 | 1 |
| A52  | T2_C                      | An attacker forges payment proof to EVSE from<br>EV/App connection                                                                                                                                                                                                                                   | Spoofing                   | Local      | Payment & Billing           | When the EVSE is not part of the payment transaction, but receives a proof of payment from the user, that proof can be forged or replayed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Payment proofs must contain fresh data to prevent replay attacks, e.g. timestamps or a backend server response to a challenge issued by the EVSE as part of the transaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | 3.00 | 4 | 3 | 3 | 3 | 0 | 3 | 4 | 4 |
| A83  | T4_A, T4_B,<br>T4_C, T4_D | An attacker gains access to a device because third-<br>party code has known vulnerabilities, but no<br>patch is available                                                                                                                                                                            | Tampering                  | Network    | Implementers &<br>Operators | Third-party code either has a zero-day vulnerability, or a vulnerability has been disclosed, which has not been patched.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The third-party code can be disabled or replaced with a similar functionality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | 2.88 | 5 | 1 | 5 | 3 | 2 | 3 | 1 | 3 |
| A56  | T4_C                      | An attacker gains privileged access to EVSE via<br>physical connection (JTAG, HMI, USB, local<br>wireless serial etc.) to disable it                                                                                                                                                                 | Denial of Service          | e Physical | Implementers &<br>Operators | Local interfaces are not secured and provide elevated privileges (either by default, or trivially achievable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Disable debug interfaces during manufacturing (JTAG, etc.). Secure all open interfaces<br>and require authenticated multi-factor access.<br>Protect critical functions such as configurations and nower states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | 2.88 | 1 | 1 | 5 | 5 | 2 | 3 | 5 | 1 |
| A18  | T4_E                      | An attacker compromises EVSE vendor to disable<br>EVSE operator's charging network<br>(based on Moscow)                                                                                                                                                                                              | Denial of Service          | e Network  | Implementers &<br>Operators | EVSE Vendor had backdoor access to EVSEs they sold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Operator should check for and remove backdoor access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | https://www.mdpi.com/1996-1073/15/11/3931                                                              | 2.88 | 4 | 1 | 5 | 3 | 2 | 2 | 5 | 1 |
| A89  | T4_D, T4_E                | An attacker manipulates the wall clock, causing<br>EVSE to misapply charging profile, incurring<br>demand costs                                                                                                                                                                                      | Elevation of<br>Privileges | Network    | Implementers &<br>Operators | EVSEs local time is synchronized from network sources. If network sources are<br>susceptible to interference, time-based functions may be triggered to run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Use standard trusted NTP pools, not vendor-specific servers or untrusted servers. Use<br>fallback mechanism when time is not known, or has not been updated, rather than<br>assume. Consider multiple sources, including local GPS clock and cellular time                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        | 2.88 | 2 | 3 | 5 | 3 | 2 | 2 | 5 | 1 |
| A20  | T5_F                      | An attacker launches a DoS attack on a utility to<br>prevent EVSE communication to CNO                                                                                                                                                                                                               | Denial of Service          | e Network  | Grid & EV                   | Publicly accessible web server/Shared resources between EVSE comms and IT infrastructure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DoS protection service/Separate network resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Utility is EVSE operator or OCPP server                                                                | 2.88 | 3 | 3 | 5 | 4 | 0 | 3 | 1 | 4 |
| A94  | T3_A                      | Electric utility leaks EV location and other<br>metadata because of overly aggressive data                                                                                                                                                                                                           | Information<br>Disclosure  | Network    | Grid & EV                   | Aggregator or CPO logs transaction information about location and payment<br>that can violate users' privacy. The logs are kept for longer than required since no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aggregrator should be selective in what data they store, for what purpose, and for how long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | 2.75 | 3 | 3 | 3 | 4 | 1 | 2 | 4 | 2 |
| A26  | T4_B                      | logging<br>1                                                                                                                                                                                                                                                                                         | Elevation of               | Physical   | Payment & Billing           | Payment interface contains software or hardware vulnerabilities that allow for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Harden processor against known vulnerabilities and establish regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        | 2.75 | 5 | 3 | 5 | 3 | 2 | 1 | 1 | 2 |
| A100 | T5_D                      | An attacker injects false data into energy markets to grid imbalance, increased energy cost or                                                                                                                                                                                                       | Spoofing                   | Network    | Grid & EV                   | If the attacker can spoof or tamper with forecasts, utilities will erroneously commit and dispatch the generators and schedule the demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | https://www.sciencedirect.com/science/article/pii/S266                                                 | 2.75 | 5 | 3 | 5 | 3 | 2 | 1 | 1 | 2 |
| A70  | T4_D                      | significantly reduced energy costs An attacker disables a device by making failed login attempts                                                                                                                                                                                                     | Denial of Service          | e Network  | Implementers &<br>Operators | Devices that disable accounts after 3 retries, or that use an exponential login<br>rate-limiter that has no upper bound, can be used to deny services to legitimate<br>users, without the attacker presenting a trusted credentials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring, anomaly detection, comparison of predicted costs.<br>Repeated failed logins shall not disable accounts. Rate-limiting login shall have an upper<br>bound (and not just exponentially add longer and longer times between logins).<br>Repeated failed logins should be monitored and logged. Failed logins may also trigger an<br>additional mandatory multi-factor or additional security measures, since the                                                                                                                                                                                                                                                                                             |                                                                                                        | 2.75 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 2 |
| A84  | T4_A, T4_B,<br>T4_C, T4_D | An attacker gains access to a device due to poor<br>code quality that allow basic methods of<br>compromise                                                                                                                                                                                           | Tampering                  | Local      | Implementers &<br>Operators | Use of home-grown code for critical security functions. Lack of rigorous security testing. Lack of regular testing. Lack of static/dynamic code analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Use static code analysis. Use standard test methods for common known vulnerabilities,<br>e.g. OWASP, MITRE, CVE.<br>Use standard libraries for critical and security functions, keep them patched and up to<br>date.<br>Test every code release.<br>Use an approved and comprehensive test plan that is updated as the threat landscape                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | 2.75 | 5 | 2 | 5 | 3 | 0 | 3 | 3 | 1 |
| A30  | T4_B, T4_A                | Attacker glitches payment interface                                                                                                                                                                                                                                                                  | Elevation of<br>Privileges | Physical   | Payment & Billing           | Hardware device used to bypass payment processor functionality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Incorporate glitching attacks in hardware testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | 2.75 | 1 | 1 | 5 | 3 | 2 | 3 | 5 | 2 |
| A85  | T6_A, T6_B,<br>T6_C       | Attacker gains access to the payment processing cloud platform                                                                                                                                                                                                                                       | Repudiation                | Network    | Payment & Billing           | Inherent trust in payment processing network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | This risk may need to be accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | 2.75 | 5 | 2 | 5 | 3 | 0 | 1 | 5 | 1 |
|      |                           | Attacker intercepts and manipulates OCPP traffic sent to and from the EVSE to impersonate OCPP                                                                                                                                                                                                       |                            |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |      |   |   |   |   |   |   |   |   |
| A11  | T4_C01                    | server.<br>(most likely MITM scenario is from the local<br>charging infra and within the backend infra.<br>With prooper secure channels a MITM scenario<br>shoult not exist.)                                                                                                                        | Spoofing                   | Network    | Implementers &<br>Operators | Authentication - OCPP 1.6J allows the use of TLS 1.0 and 1.1, which are officially deprecated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Use TLS v1.2 or OCPP 2.0.1 which requires TLS v1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        | 2.75 | 3 | 1 | 5 | 3 | 2 | 2 | 5 | 1 |
| A76  | T4_D, T4_A                | An attacker gains privileged access to a device by<br>using a copy of a software administration tool.<br>Either via a local or remote connection                                                                                                                                                     | Elevation of<br>Privileges | Network    | Implementers &<br>Operators | If devices are not able to verify the identity and authorisation of a connection or a tool, anyone with a copy of the tool is able to connect to the device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Administration/service software tools that connect to the device must use a secure<br>session, and must present verifiable credentials to the device before elevation of<br>privilege.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | 2.75 | 3 | 1 | 5 | 3 | 2 | 2 | 5 | 1 |
| A28  | T4_A                      | Attacker leverages EVSE to interface with payment processing network                                                                                                                                                                                                                                 | Tampering                  | Adjacent   | Payment & Billing           | Trust boundary may allow for implicitly trusted interactions between EVSE and payment processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test manipulation of interactions between these entities for trust based attacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                        | 2.63 | 5 | 2 | 3 | 3 | 2 | 2 | 3 | 1 |
| A46  | T4_D                      | An attacker gains privileged access via unsecure exposed API endpoints                                                                                                                                                                                                                               | Elevation of<br>Privileges | Network    | Implementers &<br>Operators | Missing proper authorization mechanisms and checks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Implement automatic authorization testing in developer pipeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | 2.63 | 5 | 1 | 5 | 3 | 0 | 1 | 5 | 1 |
| A66  | T4_E                      | An attacker alters a device configuration or<br>installs malware, and this action is not detected                                                                                                                                                                                                    | Tampering                  | Local      | Implementers &<br>Operators | Devices are not regularly scanned for malware or misconfigurations, so even<br>trivial attacks are never detected (every attack becomes 'stealthy' if no one ever<br>checks if a device has been compromised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Regular scan/update of devices, online check of configurations. Routine hardware<br>factory reset and re-update to flush out persistent stealthy malware, and ensure no<br>malware is present in memory, and the device is executing unaltered software (could be<br>part of physical maintenance cycle). Routine hardware reboot/reset of the device<br>(coordinated to minimise loss of service at a location). Malware detection or scanning<br>capabilities on the device, maybe a thin hypervisor that sends back regular reports, and a<br>larger data aggregation/monitoring would be able to detect anomalies.                                                                                                |                                                                                                        | 2.63 | 2 | 1 | 5 | 3 | 2 | 2 | 5 | 1 |
| A43  | T4_B, T4_A                | An attacker applies glitching attacks to<br>circumvent authentication of the EVSE<br>(dismantling needed)                                                                                                                                                                                            | Tampering                  | Physical   | Implementers &<br>Operators | Missing checks on microcontroller to detect and prevent glitchting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enable microcontroller glitching prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | 2.63 | 2 | 1 | 5 | 3 | 2 | 2 | 5 | 1 |
| A57  | T4_E                      | An EVSE is unable to recover from an attempted<br>attack or failure/error, and must be serviced<br>physically to recover                                                                                                                                                                             | Denial of Service          | e Local    | Implementers &<br>Operators | Devices do not protect their configurations and cannot recover from<br>misconfigurations and failures (intended or not).<br>Device cannot recover gracefully from attempted attacks, e.g. packet flooding,<br>after the attack stops.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Watchdog timers, reflash of Golden Image (rollback image), detection of error modes<br>and recovery. Devices shall recover from network attack attempts when they stop.<br>Devices shall detect failures/errors and enter failure states, e.g. a threshold counter for<br>failed transactions. If users have attempted to use the device and the operation has failed<br>several times, the device shall assume it is at fault, and enter a recovery sequence.<br>Devices shall detect and automatically engage restarts/reboots to recover from trivial<br>errors. A service technician shall only be required to physically recover the device from<br>unforeseen and disastrous failures, not from trivial errors. |                                                                                                        | 2.63 | 1 | 1 | 5 | 5 | 0 | 3 | 5 | 1 |
| A27  | T4_B                      | Payment information is intercepted and modified                                                                                                                                                                                                                                                      | Tampering                  | Local      | Payment & Billing           | Payment information is transferred in a format that can be intercepted by an<br>attacker and resent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ensure data is encrypted in transit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        | 2.38 | 5 | 2 | 5 | 3 | 0 | 1 | 2 | 1 |
| A90  | Ecosystem                 | The hardware root of trust expires                                                                                                                                                                                                                                                                   | Denial of Service          | e Local    | Generic (non-<br>specific)  | Manufacturer's root certificate expires, either because of lapse or forced by advancing time. Firmware updates can then not be applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implement secure mechanism for root replacement.<br>Use standard trusted NTP pools, not vendor-specific servers or untrusted servers. Use<br>fallback mechanism when time is not known, or has not been updated, rather than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | 2.38 | 5 | 3 | 2 | 2 | 2 | 2 | 2 | 1 |
| A59  | T5_G                      | An attacker sets up a fake EVSE/CPO/EVSE<br>Provider company or just a fake server to<br>participate in a legitimate network. The attacker<br>can receive connections from legitimate<br>devices/vehicles/systems, which they can<br>compromise or manipulate (MitM) or send back<br>malicious data. | Spoofing                   | Network    | Generic (non-<br>specific)  | Backend infrastructure is vulnerable to insider attacks if authentication is<br>equated with authorisation. Attackers setting up a seemingly legitimate<br>company and connecting to the a backend network can gain access to sensitive<br>data, or send malicious data to other participants.                                                                                                                                                                                                                                                                                                                                                                                                                                 | assume. Consider multiple sources, including local GPS clock and cellular time.<br>Backend infrastructure shall be clear on the data being exchanged, ensuring private<br>information, payment data, and other sensitive data is not leaked to other participants.<br>Backend infrastructure shall sanitise and verify data coming from other nodes. Especially<br>scripts or executable code being transferred via APIs can be malicious.<br>The architecture shall not assume that backend communication and all participating<br>companies are benign                                                                                                                                                              |                                                                                                        | 2.38 | 5 | 1 | 5 | 3 | 2 | 1 | 1 | 1 |
| A71  | T4_D                      | An attacker compromises a device by<br>compromising the cloud hosting provider of the<br>vendor or operator                                                                                                                                                                                          | Spoofing                   | Network    | Implementers &<br>Operators | Vendors may choose to outsource their cloud infrastructure, meaning they do<br>not own the endpoints that their devices communicate with. Cloud providers<br>can be coerced, or simply not compliant with security policies.<br>Secure breaches in cloud hosting solutions are also frequently due to<br>misconfigurations, or bad default permissions on access.                                                                                                                                                                                                                                                                                                                                                              | Self-hosting of critical endpoints for devices, e.g. firmware or configuration updates, and<br>only outsourcing of less critical data collection functions.<br>Only use cloud providers that are security compliant and regulated. Do not host services<br>in countries that may have an interest in disabling the charging infrastructure in the<br>countries you operate in.                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | 2.38 | 5 | 1 | 3 | 3 | 0 | 1 | 5 | 1 |
| A92  | T4_A, T4_E                | Attacker uses management terminal to configure<br>different HMI landing site                                                                                                                                                                                                                         | Tampering                  | Physical   | Implementers &<br>Operators | Lack of integrity checks against known good configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Employ verification or domain restrictions within explicit allow lists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | 2.38 | 1 | 1 | 5 | 3 | 0 | 3 | 5 | 1 |
| A8   | T1_A, T5_D                | An attacker gains access to CSMS and broadcasts<br>a RemoteTransactionStop, causing over voltage<br>transients on distribution network                                                                                                                                                               | Tampering                  | Network    | Grid & EV                   | Trust is implied between charger and the CSMS, but CSMS autheticates users.<br>Charging Station Operator and Network Charger Provider may not be the same<br>organizzation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stochastically delay grid impacting delays. See UK "Regulations: electric vehicle smart charge points"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | We assume the hardware protections fail (that is, the<br>RemoteTransactionStop has emergency priority) | 2.38 | 5 | 1 | 5 | 3 | 2 | 1 | 1 | 1 |
| A80  | T4_F, T4_E                | An attacker gains access to a device and alters the log files to hide that the device was compromised                                                                                                                                                                                                | Tampering                  | Local      | Implementers &<br>Operators | Unprotected log files can be altered to hide malicious activity. Forensic investigations are difficult to do on compromised devices that do not show an accurate sequence of events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Protect log files. Protect security events or security logs with stronger protections.<br>Securely transfer logs to remote servers and ensure log services on the device are securely<br>separated from user privileges or user space, so a compromised device cannot be made<br>to stop logging or sending logs externally with evidence of compromises.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        | 2.38 | 5 | 1 | 5 | 3 | 2 | 1 | 1 | 1 |
| A1   | T4_D                      | An attacker uses default credentials on a<br>management console exposed on the internet to<br>gain admin access                                                                                                                                                                                      | Elevation of<br>Privileges | Network    | Generic (non-<br>specific)  | Remote Management Interaface exposed to the internet; Default usernames + password                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Opt 1. Change to device individual credentials upon deployment or Opt 2. connect the system to a central authentication system, and disable default accounts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discussed on session April 18th                                                                        | 2.38 | 2 | 3 | 3 | 3 | 0 | 5 | 0 | 3 |
| A2   | T4_E                      | An attacker abuses a compromised EVSE to<br>spread malicous code onto the vehicle while<br>charging for later malicious actions                                                                                                                                                                      | Tampering                  | Adjacent   | Grid & EV                   | Improper parsing on vehicle's charging controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hardening parsing implementation (Fuzzing, Code Reviews, Pentest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | possible motivation: to permanently disrupt charging capabilities (of a certain fleet)                 | 2.25 | 5 | 2 | 3 | 3 | 0 | 1 | 2 | 2 |
| A69  | T4_D, T4_H                | An attacker gains control of an online Certificate<br>Authority and is able to sign software that a<br>device trusts                                                                                                                                                                                 | Tampering                  | Network    | Generic (non-<br>specific)  | Browsers contain hundreds of trusted CAs of varying degrees of credibility. CAs<br>can be compromised and their keys used to sign malware. If the device does not<br>have a limited list of trusted CAs, and a separation of trusted identity and<br>authority, then any public CA can sign software and the device will assume it is<br>good.                                                                                                                                                                                                                                                                                                                                                                                 | Browsers revoke CAs by issuing a software update (OCSP/CRL are useless because they<br>cannot revoke a root certificate, a revocation list is signed by the root). Devices shall only<br>contain a list of trusted CAs that are relevant to its PKI, and not the entire Internet PKI<br>that browsers contain. Devices shall also separate the concept of trusted identity and<br>authority. When a software package (or configuration update, or any type of data) is<br>received, the device must both check that the identity of the sender is trusted AND that<br>the sender is allowed to sign this type of data.                                                                                                |                                                                                                        | 2.25 | 5 | 2 | 3 | 2 | 0 | 3 | 1 | 2 |



| A99 | T1_A                      | An attacker tampers with PCC meter reading<br>communications, reducing perceived power<br>consumption, causing the EVCF to exceed<br>transfomer capacity, hit with demand charges,                                                                                                                                            | Tampering                  | Adjacent   | Implementers &<br>Operators | Metering data alterations are undetectable                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Digitally sign and verify meter data; implement secure communications                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | 2.25 | 4 | 0 | 0 | 4 | 0 | 3 | 5 | 2 |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---|---|---|---|---|---|---|
| A31 | T4_E, T4_B                | etc.<br>Payment interface leaks metadata                                                                                                                                                                                                                                                                                      | Information<br>Disclosure  | Adjacent   | Payment & Billing           | Insecure transfer of information from payment processor including not<br>encrypting useful metadata                                                                                                                                                                                                                                                                                                                                                                                                                      | Ensure pertinent details are encrypted in transit                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              | 2.25 | 5 | 2 | 2 | 2 | 1 | 2 | 3 | 1 |
| A14 | T4_A                      | An attacker employs hardcoded Payment<br>identifiers (i.e., for debugging or testing) to<br>enable free charging                                                                                                                                                                                                              | Spoofing                   |            | Payment & Billing           | Failure of authentication/Easily guessable RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitor access patterns for hardcode IDs;                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              | 2.13 | 5 | 1 | 5 | 2 | 0 | 2 | 1 | 1 |
| A58 | T4_D                      | An attacker discovers EVSEs connected to the<br>Internet (via Shodan, Censys, etc.) and stages<br>remote attacks                                                                                                                                                                                                              | Information<br>Disclosure  | Network    | Implementers & Operators    | Devices are either misconfigured, or default configuration is not intended for<br>connection to the Internet. Device runs open ports and services that are not<br>secure on the Internet                                                                                                                                                                                                                                                                                                                                 | Devices are on a secure VPN and are not exposed to the Internet. Devices are not discoverable on the Internet                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | 2.13 | 5 | 2 | 2 | 3 | 0 | 2 | 2 | 1 |
| A10 | T4_E, T4_C,<br>T4_F, T4_G | Botnet/stealth takeover via physical access, or<br>remote. Dormant malware waits for trigger event<br>to disrupt EVSE.                                                                                                                                                                                                        | Tampering                  | Physical   | Implementers &<br>Operators | Malware is introduced to the EVSE, either via remote attack or physical where<br>attacker drives along the main motorways and stops at every service station to<br>infect the charging stations there. The malware is stealthy and lies dormant until<br>a trigger event (command signal, date and time, etc.). The EVSEs are disrupted,<br>e.g. by denying service or damaging internal components that require physical<br>servicing/replacement. Such an attack can render vital transport roads useless<br>for days. | Malware/intrusion detection on EVSE. Monitoring of physical access ports and central<br>alerting/logging. Regular reboot of EVSE devices to remove memory resident malware.<br>Regular wipe and reinstall of OS and applications on EVSE devices, to remove storage<br>persistent malware.                                                                                                                                                                                                       |                                                                                                                                                              | 2.13 | 5 | 1 | 5 | 2 | 0 | 2 | 1 | 1 |
| A19 | T3_A                      | INL HCE - An unattenative operator performs<br>RemoteStopTransaction on number of chargers,<br>causing overvolt or undervolt event                                                                                                                                                                                            | Denial of Service          | e Network  | Grid & EV                   | A command safe for individual chargers become problematic when<br>synchronized to a set of chargers                                                                                                                                                                                                                                                                                                                                                                                                                      | EVSEs implement stochastic delays for performing commands that may impact grid health. CSMS should have safeguards to limit the dispatch of said commands                                                                                                                                                                                                                                                                                                                                        | https://www.gov.uk/guidance/regulations-electric-<br>vehicle-smart-charge-points                                                                             | 2.13 | 4 | 1 | 5 | 3 | 0 | 2 | 1 | 1 |
| A74 | Ecosystem                 | A vendor (inside attacker) creates proprietary<br>data formats, closed protocols, or other<br>undocumented features/extensions to the<br>standards to monopolise parts of the system<br>architecture                                                                                                                          | Tampering                  | Network    | Generic (non-<br>specific)  | Proprietary data formats, closed protocols, vendor-specific extensions, and<br>other attempts to undermine standards are created by vendors to achieve<br>vendor lock-in on a platform, or parts of a system. This creates artificial costs of<br>change, which maintains their position and kills innovation and progress.<br>Anticompetitive behaviour is usually only dealt with when regulators step in, at<br>which point much of the damage has already been done.                                                 | Enforce the use of open standards, open protocols, open formats. This provides a level playing field for all participants, and ensures that change and competition are favoured.                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              | 2.13 | 5 | 1 | 5 | 3 | 0 | 1 | 1 | 1 |
| A87 | T4_B                      | EVSE uses online repository/service matching<br>spoofable identifiers to payment methods                                                                                                                                                                                                                                      | Spoofing                   | Local      | Payment & Billing           | Unique identifiers used for payment are easily identifiable and spoofable                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ensure identification method meets NIST identity assurance standards<br>Implement theft deterrents: cables are marked so it is difficult to sell them.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              | 2.13 | 2 | 1 | 5 | 3 | 0 | 1 | 5 | 0 |
| A50 | T4                        | cables/copper, vandalism, damage to grid<br>connection/transformer (disables the cluster of<br>nearby charging stations)                                                                                                                                                                                                      | Denial of Service          | e Local    | Implementers &<br>Operators | Physical attacks against the hardware and power electronics on site. Theft is a motivation when there are high-power cables with copper. Vandalism can be done against physical parts.                                                                                                                                                                                                                                                                                                                                   | Physical protection: cables and valuable parts are not easy to dismantle.<br>Power electronics are protected from physical attack, locked boxes.<br>Physical area security: well-lit, open spaces, easy to see at a distance. Fenced or<br>underground transformers and grid connectivity.                                                                                                                                                                                                       |                                                                                                                                                              | 2.13 | 2 | 1 | 5 | 3 | 2 | 2 | 1 | 1 |
| A77 | T4_D, T4_A                | An attacker gains privileged access to a device by<br>impersonating a software administration tool.<br>Either via a local or remote connection                                                                                                                                                                                | Spoofing                   | Network    | Implementers &<br>Operators | If devices are not able to verify the identity and authorisation of a connection or<br>a tool, anyone impersonating the tool can gain access, e.g. by reverse-<br>engineering the protocol, or sending magic numbers                                                                                                                                                                                                                                                                                                     | Administration/service software tools that connect to the device must use a secure<br>session, and must present verifiable credentials to the device before elevation of<br>privilege. The use of a certain protocol, or making a connection with a certain software<br>tool is not a proper authorisation method.                                                                                                                                                                               |                                                                                                                                                              | 2.00 | 5 | 1 | 5 | 2 | 0 | 0 | 0 | 3 |
| A13 | T4_B6                     | An attacker swaps vehicle ECUs so that the power transfer is billed to someone else                                                                                                                                                                                                                                           | Spoofing                   | Physical   | Payment & Billing           | Tokens are insecurely stored or storage is readily defeated                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Associate ECU token with other vehicle unique properties                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | 2.00 | 1 | 1 | 5 | 3 | 0 | 1 | 3 | 2 |
| Α4  | T4_C, T4_F,<br>T4_G       | An attackers gains access to the EVSE and extracts confidential data                                                                                                                                                                                                                                                          | Information<br>Disclosure  | Adjacent   | Grid & EV                   | Insecure Diagnostic Port, Default Diagnostic Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unique Diagnostic Password                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e.g. Payment information is stolen by an actor connecting<br>to a physical diagnostic interface, and using an<br>exploit(default credentials) to become root | 2.00 | 3 | 0 | 3 | 5 | 2 | 2 | 1 | 0 |
| A6  | T1_A                      | An attacker physically accesses the EVSE to<br>tamper with the EVSE power electronics<br>protocol (PEP) (e.g., CANT module or ARP<br>spooing) to cause (e.g.) overvoltage to vehicle<br>(damaging to EV), heated cable (harm to user),<br>power module load balancing (harm to<br>distribution network)                       | Tampering                  | Physical   | Generic (non-<br>specific)  | A typical charging station decouples the system board from the power<br>electronics. A simple protocol is then employed for the system board to<br>command the power electronics module                                                                                                                                                                                                                                                                                                                                  | (1) Monitoring of internal networks, (2) authenticate internal communications                                                                                                                                                                                                                                                                                                                                                                                                                    | Labeled generic since damage can occur in multiple<br>places (EV, driver, grid)                                                                              | 2.00 | 1 | 2 | 2 | 2 | 4 | 2 | 2 | 1 |
| A61 | T4_E                      | An attacker exploits a known vulnerability in the<br>EVSE/EV/App that has been fixed, but the patch<br>has not been applied to the device                                                                                                                                                                                     | Tampering                  | Network    | Implementers &<br>Operators | Lack of patch management or remote patch capability, lack of patch tracking of<br>which devices are running which versions of firmware, lack of tracking to<br>discover that a patch has been released for a critical issue                                                                                                                                                                                                                                                                                              | Use proper patch management (ISO 27000 series), devices that are accessible remotely<br>must also be patchable remotely. Software BOM and live version tracking on all devices.<br>Tracking of version updates on everything on the Software BOM                                                                                                                                                                                                                                                 |                                                                                                                                                              | 1.88 | 5 | 1 | 5 | 1 | 0 | 1 | 1 | 1 |
| A53 | T4_C, T4_F,<br>T4_G       | An attacker gains privileged access to EVSE via<br>physical connection (JTAG, HMI, USB, local<br>wireless, serial, etc.) to upload malware or alter<br>configuration of trusted servers, DNS, CAs,<br>firmware, bootloader, files, memory, etc.                                                                               | Tampering                  | Physical   | Implementers &<br>Operators | Local interfaces are not secured and provide elevated privileges (either by default, or trivially achievable)                                                                                                                                                                                                                                                                                                                                                                                                            | Disable debug interfaces during manufacturing (JTAG, etc.). Secure all open interfaces<br>and require authenticated multi-factor access.<br>Protect critical configuration files on the device, do not allow direct access to file<br>systems. Require signed updates to all files (firmware, bootloader, configurations).                                                                                                                                                                       |                                                                                                                                                              | 1.88 | 1 | 1 | 5 | 3 | 2 | 1 | 1 | 1 |
| A15 | T4_A03                    | An attacker enters the EVSEs cabinet, MITM/port<br>steal/ communication between system<br>controller and meter (websockets or MQTT), and<br>increases (decreases meter readings)                                                                                                                                              | Tampering                  | Local      |                             | Inadaquate EVSE-meter communication integrity                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Employ a cryptographic communications protocol or enable cryptographically signed metering receipts                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              | 1.88 | 4 | 1 | 5 | 3 | 0 | 1 | 1 | о |
| A29 | T4_B                      | Attacker spoofs payment card processor                                                                                                                                                                                                                                                                                        | Spoofing                   | Adjacent   | Payment & Billing           | Attacker creates a malicious entity to hijack and respond to payment requests                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ensure proper authentication/authorization of payment system through PKI or similar functionality                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              | 1.88 | 3 | 1 | 3 | 2 | 2 | 2 | 1 | 1 |
| A13 | T4_A, T4_B                | An attacker clones RFID token so that power transfer is billed to someone else                                                                                                                                                                                                                                                | Spoofing                   | Adjacent   | Payment & Billing           | Failure of authentication/Easily guessable RFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitor access patterns; Implement secure payment scheme, such as EMV, NFC, etc.                                                                                                                                                                                                                                                                                                                                                                                                                 | Discussed on May 2, 2023                                                                                                                                     | 1.88 | 1 | 3 | 3 | 3 | 0 | 3 | 0 | 2 |
| A93 | T5_F                      | Attacker takes over a charging network due to<br>DNS expiration                                                                                                                                                                                                                                                               | Tampering                  | Network    | Implementers &<br>Operators | Operators neglects renewing domain name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Operator should ensure domain name record contact information is current and pay<br>ahead of time. Business continuity plan must specify what to do when operator ceases to<br>exist                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              | 1.75 | 5 | 1 | 1 | 2 | 2 | 1 | 1 | 1 |
| A54 | T4_C, T4_F,<br>T4_G       | An attacker gains privileged access to EVSE via<br>physical connection (JTAG, HMI, USB, local<br>wireless, serial, etc.) to copy client credentials so<br>they can impersonate it                                                                                                                                             | Information<br>Disclosure  | Physical   | Implementers &<br>Operators | Local interfaces are not secured and provide elevated privileges (either by default, or trivially achievable)                                                                                                                                                                                                                                                                                                                                                                                                            | Disable debug interfaces during manufacturing (JTAG, etc.). Secure all open interfaces<br>and require authenticated multi-factor access.<br>Protect client/device identity so it is not easily duplicated with physical access, e.g. by<br>placing cryptographic asymmetric keys in cryptochips or secure elements.                                                                                                                                                                              |                                                                                                                                                              | 1.75 | 1 | 1 | 5 | 3 | о | 1 | 0 | 3 |
| A5  | T2_D                      | An attacker executes a denial of charging attack<br>by causing physical interferences on the charging<br>cable                                                                                                                                                                                                                | Denial of Service          | e Physical | Grid & EV                   | Charging cable acts as an unintentional antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Brokenwire                                                                                                                                                   | 1.75 | 3 | 1 | 2 | 3 | 0 | 3 | 1 | 1 |
| A97 | T5_F                      | An attacker denies charger from communicating<br>with the CSMS using {disconnecting Ethernet<br>cable, arp spoof, cutting switch or local CSMS<br>power}. CSO-configured policy establishes free<br>charging if communication cannot be established                                                                           | Denial of Service          | e Adjacent | Implementers &<br>Operators | CSO configures free charging during communications outages                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Review if free charging fallback is best aligned with busy objectives; harden network and communication mechanisms (physical protections) to mitigate malicious interference;                                                                                                                                                                                                                                                                                                                    | Loss-of-communication fallback behavior is typically<br>charger configurable                                                                                 | 1.63 | 2 | 1 | 5 | 3 | 0 | 1 | 1 | 0 |
| A86 | T4_A                      | Free Charging codes are hard coded into EVSE<br>logic and users can input them<br>An attacker gains control of the DNS server the                                                                                                                                                                                             | Spoofing                   | Local      | Payment & Billing           | Some EVSE logic may contain hard coded values for charge testing which can be<br>leveraged for free charging in production                                                                                                                                                                                                                                                                                                                                                                                               | Ensure that testing values and hard coded values are inspected and evaluated prior to deployment in production.                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              | 1.63 | 5 | 1 | 1 | 2 | 0 | 2 | 1 | 1 |
| A62 | T4_D                      | device uses to redirect configuration updates,<br>firmware updates, trusted entity updates,<br>certificate renewal, etc. to a malicious server                                                                                                                                                                                | Tampering                  | Network    | Implementers &<br>Operators | Use of non-standard, vendor-specific DNS servers that can depricate, disappear,<br>be compromised. Use of normal DNS instead of DNSSEC                                                                                                                                                                                                                                                                                                                                                                                   | disappear (Cloudflare, OpenDNS, Google, etc.) Make DNS part of a configuration that can<br>be updated remotely, if needed later                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              | 1.63 | 5 | 1 | 1 | 1 | 0 | 3 | 0 | 2 |
| A48 | T4_A                      | An attacker tampers with the HMI interface by using unsecured interfaces (e.g. Bluetooth)                                                                                                                                                                                                                                     | Tampering                  | Local      | Implementers &<br>Operators | Interfaces to HMI not disabled (Bluetooth, Remote Maintenence channels, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hardening of HMI components, operating system, and interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | 1.50 | 1 | 2 | 5 | 2 | 0 | 1 | 0 | 1 |
| A64 | T4_D, T4_A                | An attacker gains access to EVSE/EV/App using<br>known vulnerabilities because the EVSE vendor<br>no longer exists or provides security updates                                                                                                                                                                               | Tampering                  | Network    | Generic (non-<br>specific)  | When a vendor ceases to operate, the devices they have sold and deployed will<br>not be updated and vulnerabilities discovered in their code will not be patched.<br>When a new vulnerability is disclosed, this means all their deployed devices are<br>vulnerable to attacks and present a danger to users and the rest of the<br>architecture                                                                                                                                                                         | The architecture shall have a security policy for what to do when vendors no longer<br>provide security updates to deployed critical infrastructure. This may happen due to the<br>vendor ceasing to exist, or simply not keeping up with security patches in a reasonable<br>time, or refusing to patch vulnerabilities for whatever reason.<br>There shall also be punitive mechanisms that force vendors to provide security updates<br>and maintain the security of their deployed hardware. |                                                                                                                                                              | 1.50 | 5 | 1 | 3 | 1 | 0 | 1 | 0 | 1 |
| A51 | T4_B                      | An attacker prevents communication from EVSE<br>to payment system                                                                                                                                                                                                                                                             | Denial of Service          | e Network  | Payment & Billing           | Data communication to payment system is blocked or denied, to prevent<br>verification of payment or details. This can also happen when the network is<br>down, servers are down, the nearby telecom tower is unreachable, network<br>equipment fails, etc.                                                                                                                                                                                                                                                               | Consider what the failover state is, e.g. charging is denied and the station is useless, or<br>charging can still be done, but under decreased payment security conditions.<br>Payment transactions can be stored and processed later, when connectivity is restored.<br>Backup modem or alternative communication path for emergency usage when normal<br>usage is degraded; could be common for clusters of chargers.                                                                          |                                                                                                                                                              | 1.50 | 1 | 1 | 2 | 3 | 0 | 3 | 1 | 1 |
| A98 | T4_D                      | An attacker denies charger from communicating<br>with the cloud-based CSMS by {DDoSing the<br>cloud service; DDoSing the charger/VPN gateway<br>interface, severing charger uplink}. CSO-<br>configured policy establishes a default charging<br>policy of TxDefault(0), meaning the CSMS must<br>communicate the power level | Denial of Service          | e Network  | Implementers &<br>Operators | When TxDefault(0) is used for load management of a feeder, the CSMS sets the charging profile based on existing EV charging facility power profile                                                                                                                                                                                                                                                                                                                                                                       | No charge is the fail secure outcome. CSMS elastic scaling may address and DDoS prevention service may address the DDoS. Financial controls need to be established                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              | 1.38 | 2 | 1 | 2 | 3 | 0 | 1 | 1 | 1 |
| A42 | T4_G                      | An attacker extract crypto material via JTAG<br>physical access<br>An attackers gains access to the manufacturer                                                                                                                                                                                                              | Tampering                  | Physical   | Implementers &<br>Operators | JTAG interface not disabled and/or pins still present                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remove JTAG pins, disable diagnotic services                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              | 1.38 | 3 | 1 | 2 | 1 | 0 | 1 | 2 | 1 |
| A45 | T3_A                      | network and uses maintenance channels to<br>control the EVSEs<br>An attacker forces the EVE Exterior integrate                                                                                                                                                                                                                | Elevation of<br>Privileges | Network    | Implementers &<br>Operators | Missing privileged access management for 3rd parties                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Protect access from 3rd parties with additional AuthN/AuthZ means                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              | 1.38 | 5 | 1 | 1 | 1 | 1 | 2 | 0 | 0 |
| A3  | T4_C, T4_G                | mode by physically tampering with the Control<br>PCB                                                                                                                                                                                                                                                                          | Denial of Service          | e Physical | Grid & EV                   | Housing of EVSE not tamper-proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tamper-proof EVSE Housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Difficult to scale                                                                                                                                           | 1.38 | 1 | 1 | 3 | 2 | 0 | 2 | 0 | 2 |
| A88 | Т4_В                      | EVSE cannot access necessary cloud services to<br>process payment                                                                                                                                                                                                                                                             | Denial of Service          | e Network  | Payment & Billing           | EVSE may not be able to process payment due to access issues                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ensure payment processing connectivity exists and enable remote logging and notifications for connectivity problems                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              | 1.25 | 1 | 1 | 1 | 3 | 0 | 2 | 0 | 2 |
| A78 | T5_B                      | An attacker obtains genuine access credentials to<br>devices because the credentials are not properly<br>protected                                                                                                                                                                                                            | Information<br>Disclosure  | Network    | Generic (non-<br>specific)  | Certificate credentials depend on a private key, shared secret credentials depend<br>on a shared key. Both of these can be copied from someone with the proper<br>authority. Private keys can be more difficult to obtain because they can be<br>better protected by the OS or hardware, but that requires using these protection<br>methods, which are platform-dependent.                                                                                                                                              | Use asymmetric/certificate credentials wherever possible, both for human users and<br>Machine-to-Machine connections.<br>Ensure credentials are protected by hardware (e.g. TPM) and the OS, and are not trivial to<br>copy from a file or from memory.<br>Use multi-factor authentication on credentials where possible, especially less secure<br>credentials or those for human users.                                                                                                        |                                                                                                                                                              | 1.25 | 5 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| Α7  | T5_E                      | An attacker bypasses the credentials on a<br>management console exposed to the internet to<br>change active frontend rectifier setpoints                                                                                                                                                                                      | Elevation of<br>Privileges | Network    | Grid & EV                   | buffer overflow, SQL injection, XSS, CSRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Two-factor authentication on Internet APIs. Use secure libraries and configurations that<br>are not vulnerable to injection and buffer overflows.                                                                                                                                                                                                                                                                                                                                                | This is a cloud interface                                                                                                                                    | 1.13 | 1 | 1 | 2 | 1 | 0 | 1 | 2 | 1 |
| A17 | T6_C                      | An attacker steals the JSON Web Token and<br>associates account with a developer account for<br>free charging                                                                                                                                                                                                                 | Spoofing                   | Network    | Payment & Billing           | JSON Web Token reuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Change development JSON Web Token regularly                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              | 1.13 | 3 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |